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Abstract—In this paper, the problem of automatic dance
performance evaluation from human Motion Capture (MoCap)
data, is addressed. A novel framework is presented, using data
captured by Kinect-based human skeleton tracking, where the
evaluation of user’s performance is achieved against a gold-
standard performance of a teacher. The framework addresses
several technical challenges, including global and local tempo-
ral synchronization, spatial alignment and comparison of two
“dance motion signals”. Towards the solution of these techni-
cal challenges, a set of appropriate quaternionic vector-signal
processing methodologies is proposed, where the 4D (spatiotem-
poral) human motion data are represented as sequences of pure
quaternions. Such a quaternionic representation offers several
advantages, including the facts that joint angles and rotations
are inherently encoded in the phase of quaternions and the
three coordinates variables (X,Y ,Z) are treated jointly, with
their intra-correlations being taken into account. Based on the
theory of quaternions, a number of advantageous algorithms
are formulated. Initially, global temporal synchronizati on of
dance MoCap data is achieved by the use of quaternionic cross-
correlations, which are invariant to rigid spatial transfo rmations
between the users. Secondly, a quaternions-based algorithm is
proposed for the fast spatial alignment of dance MoCap data.
Thirdly, the MoCap data can be temporally synchronized in a
local fashion, using Dynamic Time Warping techniques adapted
to the specific problem. Finally, a set of quaternionic correlation-
based measures (scores) are proposed for evaluating and ranking
the performance of a dancer. These quaternions-based scores are
invariant to rigid transformations, as proved and demonstrated.
A total score metric, through a weighted combination of three
different metrics is proposed, where the weights are optimized
using Particle Swarm Optimization (PSO). The presented ex-
perimental results using the Huawei/3DLife/EMC2 dataset are
promising and verify the effectiveness of the proposed methods.

Index Terms—Skeleton tracking, Motion Capture data, dance
analysis, Quaternions, vector signal processing

I. I NTRODUCTION

FUture social networks move towards immersive, collabo-
rative environments [1] that can support real-time realistic

interaction between humans, via human motion tracking and
understanding [2]. In a related application scenario, described
by the Huawei 3DLife/EMC2 grand challenge1, an online
dance class is considered. A teacher is able to illustrate to
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online users Salsa choreography steps of their choice. After
viewing the captured sequence, another online user, such as
a student, may attempt to mimic the dance steps and then
get feedback from a system about her/his performance. In
this work, a number of technical challenges, needed to be
addressed for the described scenario of interaction, are studied.
In the following subsections, the exact problem is formulated
and the proposed methodology is summarized along with the
contributions of the paper.

A. Problem formulation

The problem of dance analysis can be considered as a
special case of human activity analysis [2], [3], [4]. The
majority of relevant papers in human analysis addresses the
problem of human motion/action recognition. The current
paper shifts the focus from the action classification perspective
(“which action was performed?”) to the evaluation objective
(“how well was it performed?”). Evaluating and ranking the
performance of users based on MoCap data is a challenging
research problem that has not been adequately addressed so
far.

The exact formulation of the problem can be summarized
as follows. A “gold” template MoCap dance sequence for a
specific dance choreography is prerecorded. The “gold” perfor-
mance is executed by a teacher under a specific audio sample
for the given choreography. The motion of an amateur dancer
(probably located at a distant place) is then captured, as he/she
attempts to execute the specific choreography under the same
audio sample. Firstly, since the two MoCap dance sequences
were captured at different time instances they are not globally
synchronized (in time) with each other. Secondly, the captured
MoCap data refer to different global coordinate systems, since
dancers may have been captured by different setups and are
allowed to be placed anywhere with respect to the capturing
sensor. Thirdly, the MoCap system is of low-cost and thus far
from an ideal one, introducing tracking inaccuracies, missing
values and incomplete capture sequences. Finally, the amateur
dancer may have executed only a part (subsequence) of the
whole choreography. Given these facts, the first problem that
needs to be addressed is the global spatiotemporal alignment of
the incomplete amateur’s MoCap sequence with the reference
one. Local temporal synchronization may also need to be
addressed, in order to compensate local phase differences,if
this is allowed in the dance evaluation scenario. Solving these
problems will first of all enable the visual inspection of theam-
ateur dance in comparison to the “gold” one, which is useful
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for dance training. The second problem addressed in the paper
is the automatic evaluation of the executed amateur dance by
calculating an overall score, as well as instantaneous scores for
his/her performance. This would enable an intelligent system
to provide feedback to the dancer on how to improve his/her
performance, making the presence of a teacher unnecessary.

B. System overview and methodology - Main Contributions

An overview of the proposed system is given in Fig. 1.
The MoCap data, for both the professional and the amateur
dancer performers, is obtained via human skeleton tracking
from depth-maps, captured by Microsoft Kinect sensors. The
tracked joint positions, which constitute vector signals,are
represented using quaternions. Then, using a set of appropriate
quaternionic signal processing techniques, global temporal
synchronization of the amateur dance with the “gold” one is
realized. Local phase differences can also be compensated by a
local synchronization method. Additionally, a fast quaternionic
method for spatially aligning the two dances is applied, if this
is needed. Given that the dances have been synchronized, they
are compared to each other, in order to provide a set of dance
evaluation scores. Finally, different scores are combinedwith
the use of appropriate weights to produce a final score.

In this paper, MS Kinect sensors are used for capturing
dancers motion. However, the proposed processing framework
could potentially be applied with human motion data obtained
by other technologies, such as 3D optical MoCap technologies
(e.g. VICON2), wearable-sensors [3], [4], [5], or even from
monocular visual data [6], [7], [8] or multi-view visual data
[9]. The use of Kinect sensors in our system makes it viable for
a large range of users, including home enthusiasts. Notice that
although the Kinect sensor has recently attracted the attention
of many researchers [10], [11], not much attention has been
paid on Kinect-based human motion analysis.

In order to address the problems formulated in paragraph
I-A, a quaternionic signal processing framework for dance
vector signal analysis is proposed. Quaternions have been
extensively used in computer graphics to represent rotations.
Quaternions theory has also recently been used in various
computer-vision applications, such as in color image analysis
via quaternionic Fourier transforms [12], color image registra-
tion [13], motion estimation in color image sequences [14],
[15], image classification [16] and others. However, to the
authors knowledge, it has rarely been used in a human motion
analysis application, such as the one addressed in the paper.
Some relevant works are given in section II.

Using the proposed quaternionic framework, the 4D (spa-
tiotemporal) motion data are encoded and handled in a holistic
manner, letting the three coordinates variables (X ,Y ,Z) to
be treated jointly and their intra-correlations to be takeninto
account. Additionally, rotations are inherently encoded in the
phase of quaternions. Thus, for example, using a quaternionic
represention of the joint positions, joint angles are inherently
encoded in the phase of quaternions. More importantly, using
the mature (although quite complicated) theory of quaternions,
a number of algorithms that are endowed with significant

2http://www.vicon.com/

Fig. 1. A schematic description of the overall system. Optional block
operations are denoted with gray font.

advantages can be formulated. For instance, as described in
this paper, fast algorithms for the estimation of rigid trans-
formations can be formulated, or correlation measures that
are invariant to rigid transformations can be proposed and
exploited.

The main contributions of the paper can be summarized as
follows: i) It is among the first few papers that focus on the
problem of automatically evaluating and ranking the perfor-
mance of users, based on their motion, as captured by MoCap
technologies; ii) To the authors’ knowledge, it is the first
paper that extensively evaluates the proposed methodologies
based on ground-truth data. We also test other relevant state-
of-the-art methods [17] with these ground-truth data, thathave
not been previously assessed; iii) The paper presents a novel
quaternionic framework for MoCap data analysis and describes
methodologies for the global and local synchronization of
MoCap sequences, as well as their fast spatial alignment; iv)
It introduces the use of quaternionic correlation metrics that
couple the dependencies of the three dimensions and present
invariance to global rigid transformations.

C. Paper organization

The rest of the paper is organized as follows: In section
II, we present the related work in the field of human motion
analysis and evaluation. In section III, we briefly describethe
Huawei-3DLife/EMC2 dataset, as well as the Kinect human
skeleton tracking module, used for tracking of the dancers’
movements. In section IV, we provide the necessary quater-
nions theory and describe the proposed quaternionic or other
representations of dance (generally human motion) signals.
In section V, we present the proposed methodologies for the
student-to-teacher temporal synchronization and spatialalign-
ment. Next, in section VI, we propose a set of quaternionic or
other metrics that can be used as dance evaluation scores. In
section VII, we describe the methodology for the selection
of appropriate weights to be used for combining multiple
score metrics. Finally, in section VIII, we present a set of
experimental results, before concluding in section IX.

II. RELATED WORK

Quaternions have been used in various scientific fields,
such as in computer graphics and biomechanics, in order to
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represent 3D rotations of body segments. For example, in [18],
the problem of motion of virtual characters is addressed, by
making use of quaternions to create distance metrics between
multiple character poses. The objective is to blend multiple
poses, with the aim to generate both interactive and expressive
motions of virtual characters in computer graphics. The use
of quaternions provides both computationally efficiency and
mathematical robustness (e.g. avoiding the gimbal-lock effect
in the Euler-angle representation of rotations). In [19], quater-
nions are also used to represent rotations and a quaternions-
based algorithm for rigid body motion interpolation between
two poses is proposed, with application to biomechanics.

Numerous works for human motion analysis from MoCap
data can be found in the literature. However, most of them deal
with the motion segmentation and classification task, while
only a few of them address the motion evaluation problem.
Here, we shortly present the most relevant works.

A human motion analysis application, where the use of
quaternions has been proposed, is the one described in [20].
The problem of human motion segmentation is addressed.
More specifically, the segmentation of MoCap data into din-
stinst motion patterns is efficiently addressed using Principal
Component Analysis (PCA), Probabilistic PCA or Gaussian
Mixture Models (GMMs). Quaternions are used to represent
rotations of joints, relative to their parent joints in a skeletal
body hierarchy. However, the benefit of using quaternions is
not clearly explained and the paper focuses on the motion
segmentation task. A skeletal body hierarchical representation,
similar to that of [17], is used.

In another more recent work [21], the authors efficiently
address the problem of segmenting a motion stream into dis-
trict motion patterns and recognizing them. The two problems
(segmentation and recognition) are treated simultaneously.
This is achieved by introducing and exploiting a similarity
measure, nominated as kWAS, that is based on Singular Value
Decompositions (SVD) of the motion data. kWAS measures
the similarity of two motions patterns by calculating the angu-
lar similarity (inner product) of singular vector pairs andusing
the corresponding singular values for weights. A kWAS-based
algorithm is proposed to treat segmentation and classification
jointly. The algorithm presents high accuracy. However, the
kWAS measure is not invariant to rotations of the human
subject with respect to a static global coordinate system.
Thus, the efficiency of the algorithm was evaluated with
high-accuracy optical MoCap technology (VICON), where the
positions of different body segments are given relative to a
moving coordinate system at the subject’s pelvis.

The motion classification task is also addressed in [22]. An
interactive dancing game using optical MoCap technology is
described, where a virtual partner recognizes and responds
to the player’s movement. The proposed system is able to
classify the player’s moves among eight different template
dance patterns, in a continuous manner. In order to account for
temporal speed variations, a progressive block-based matching
method is proposed, which imitates Dynamic Time Wrapping
(DTW) by locally matching blocks of frames in ascending time
order. The system was evaluated through user studies and a
questionnaire’s filling.

(a) Anne-Sophie-k vs Anne-Sophie-k (b) Bertand vs Gabi

Fig. 2. Skeleton-tracking snapshots: (a) Anne-Sophie-k (professional female
dancer) in choreography c2. Notice that the two dance instances are very
similar for the professional dancer; (b) Bertand (professional male dancer)
vs Gabi for choreography c3. Generally, tracking is robust.However, there
are a few cases where tracking of some joints is lost for few frames, due to
self-occlusions, as in the example shown in (b).

A more relevant work that addresses the dance evaluation
problem is presented in [23]. A dance training system based
on MoCap and virtual reality technologies is described. The
system evaluates the dissimilarity between the dances of a
learner and a virtual teacher and provides feedback. For each
time instance (frame), the dance dissimilarity is given from
the euclidean distance between the virtual teacher’s template
posture and the student’s posture. A total score is obtainedby
averaging over all frames. Three commonly used features, the
joint positions, velocities and angles, were used and evaluated.
However, the evaluation was performed only within a binary
classification framework, by assessing how well the system can
discriminate between similar and dissimilar dance motions.

In another recent and interesting Kinect-based relevant work
[17], a gesture classification system for skeletal wireframe
motion is presented. A hierarchical angular skeleton represen-
tation is proposed and independence to the global coordinate
system (camera position and orientation) is achieved based
on a set of heuristics. Specifically, the tracked torso is fitted
with a single reference frame and the orientations of the joints
are parameterized using that frame. Therefore, the system’s
invariance to transformations depends on how well and robust
the torso has been tracked and fitted to the reference frame.
The dance evaluation problem is also shortly addressed, but
no experimental results are given.

Finally, some other works related to dance analysis can
be found in the literature [24], [25], [26]. However, in these
works emphasis is given mainly on dance segmentation and
choreographic representations and is based on the assumption
that the dancers are professional. Additionally, they introduce
the musical information for dance analysis. For example, in
[24] the authors describe an approach for the representation of
dance gestures in Samba and propose a method that searches
for shared elements in dance and music at the metrical
level. Similarly, in [25] musical information is introduced for
motion structure analysis. A method that automatically detects
the musical rhythm and segments the original motion into
primitive dance motions is described.

III. I NPUT DATA AND SKELETON TRACKING

A. Dataset

The dataset from the Huawei 3DLife/EMC2 Grand Chal-
lenge was utilized in this work. It contains recordings of Salsa
dancers, captured by a variety of equipment, including a Mi-
crosoft Kinect sensor. Recordings of two professional dancers
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(a male and a female) and 13 amateur (student) dancers (8
males and 5 females) in six different Salsa choreographies
(c1-c6), constitute the dataset. For this work, we use only
the Kinect depth-map recordings, making the approach viable
for a large range of users. “Ground-truth” evaluation ratings,
provided by Salsa dance experts, are also included in the
database.

B. Kinect-based skeleton tracking

The depth maps of the dataset were recorded using the
OpenNI3 API. Therefore, the OpenNI high-level skeleton
tracking module was utilized for detecting the captured dancer
and tracking his/her body joints. More specifically, using the
OpenNI tracking module, the positions of 15 joints (Head,
Neck, Torso, Left and Right Shoulder, L/R Elbow, L/R Wrist,
L/R Hip, L/R Knee and L/R Foot) are tracked, as shown in
Fig. 2. Our experiments showed that skeleton tracking is quite
effective with the underlying dance captures, although there
are a few cases where tracking of some joints (mainly the
knees) is lost for a few frames, due to self-occlusions (see
Fig. 2(b)). Obviously, more accurate future releases of OpenNI
could potentially improve tracking or the Microsoft’s Kinect
SDK4 could have been employed for more accurate tracking in
a real-time application (unfortunately the Kinect SDK cannot
be used with pre-recorded data). Additionally, more accurate
approaches for human motion capture, e.g. using wearable
sensors or “gold-standard” 3D optical MoCap technologies
(e.g. VICON), could potentially increase the accuracy of the
proposed automatic evaluation methods.

IV. QUATERNIONS THEORY AND SKELETON DATA

REPRESENTATIONS

The skeleton tracking module provides the positions of the
dancer’s joints for each frame. The position of thej-th joint
with time is a 3D vector signal

~pj(t) = [Xj(t), Yj(t), Zj(t)]
T
, j = 1, .., J, t = 0, .., T − 1, (1)

whereJ = 15 is the total number of tracked joints andT is
the total number of frames.

We propose an automatic dance evaluation approach that
represents and handles the skeleton tracking data using hyper-
complex numbers and specifically quaternions [27], [13], in
order to handle the three coordinate variablesX , Y and Z
in a holistic manner, i.e. jointly. Therefore, before goinginto
the details of the proposed representations, we provide some
fundamental theory on quaternions.

A. Notes on quaternions

1) Fundamentals: Quaternions theory, introduced by
Hamilton [27], constitutes a generalization of complex num-
bers theory, where instead of a scalar imaginary part, a3D
“vector” imaginary part is considered. More specifically, a

3http://www.openni.org/
4http://www.microsoft.com/en-us/kinectforwindows/

quaternion q is composed of its scalar (real) partS(q) and
a vector partV(q):

q = S(q)+V(q), S(q) = qs, V(q) = qii + qj j + qkk, (2)

whereqs, qi, qj , qk ∈ R and{i, j , k} are three distinct imagi-
nary units, such that

i2 = j2 = k2 = ijk = −1, (3a)

ij = −ji = k, jk = −kj = i, ki = −ik = j . (3b)

This equation defines the (Hamilton) product of quaternions,
which is a non-commutative operation.

The conjugate of a quaternion q is given byq = S(q)−V(q)
and its modulus or norm by

|q| =
√

qq =
√

qq=
√
q2s + q2i + q2j + q2k. (4)

The quaternions with zero scalar part, are referred to as “pure”
quaternions, while those with unit modulus are referred to as
“unit” or “unitary”.

Euler’s formula for complex numbers is generalized in the
quaternionic algebra. It holds:eµφ = cos(φ) + µ sin(φ),
whereµ is a unit pure quaternion (µ2 = −1). Therefore, any
quaternion can be expressed in its polar form: q= |q|eµqφq,
where

µq = V(q)/|V(q)|, φq = tan−1(|V(q)|/S(q)) (5)

are referred to as the “eigen-axis” and “eigen-phase” (or
“eigen-angle”), respectively.

Quaternions theory has many analogies with complex num-
bers theory; However, as dictated by (3), quaternions’ multipli-
cation is non-commutative, introducing difficulties in theuse
of quaternions. Additional theoretical notes on the quaternionic
algebra can be found in Appendix A, while for a more detailed
presentation the reader is referred to [13]. Throughout therest
of the paper, we tried to keep a uniform notation, expressing
real numbers by italic letters (e.g. “qs”), full quaternions by
normal (non-italic) letters (e.g. “q”) and pure quaternions by
bold symbols (e.g. “p”).

2) Quaternionic cross-covariance:The cross-covariance of
two (“pure” in our case) quaternionic signalsp(t) andq(t) is
given by:

C(τ) = C{pv(t), qv(t)} = 1

T

T−1∑

t=0

pv(t) qv(t− τ), (6)

where pv(t) = p(t) − pc and qv(t) (calculated similarly)
are the varying parts of the vector signals, calculated by
subtracting their centroids

pc =
1

T
·
T−1∑

t=0

p(t) (7)

andqc, respectively.
Notice that the Hamilton product of the two pure quater-

nions p and q is a full quaternion C. Any rotation between
p and q is effectively encoded in the phase of C. This
is a key element towards achieving rotation invariance in
the correlation-based metrics defined in next sections. Notice
moreover, that a similar covariance metric could not be defined
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using standard 3D vectors notation. The use of the vectors
inner product, instead of the quaternions product, would not
let us introduce rotation invariant metrics, as explained and
demonstrated in subsection VI-B.

3) Quaternionic Fourier Tranform:The forward discrete
QFT of a (“pure” in our case) quaternionic signalp(t) is
defined similarly to [12]:

P̂(u) =
T−1∑

t=0

e−µ
2πu
T

t p(t), u = −T/2, . . . , T/2− 1, (8)

where µ is any unit pure quaternion (µ2 = −1). The
inverse QFT is obtained from (8) by changing the sign of the
exponential and summing overu instead oft. Actually, due
to the fact that quaternion’s multiplication is not commutative,
the QFT in (8) is one of the two different versions of QFT,
the QFT-Left. The QFT-Right is defined as in (8) but with the
exponential term multiplyingp(t) from the right. For further
details on the QFT the reader is referred to [12].

B. Skeleton data representations

1) Absolute joint positions:Moxey et al. [13] used “pure”
quaternions to encode color images as vector fields. Adopting
a similar representation scheme, we use pure quaternions to
encode the absolute 3D position of each joint during time, as
follows:

pab
j (t) = i·Xj(t)+j ·Yj(t)+k·Zj(t), j = 1, .., J, t = 0, .., T − 1.

(9)
2) Pre-filtering: In order to suppress high-frequency track-

ing noise, which may affect subsequent calculations (e.g. the
calculation of joint velocities), we apply low-pass filtering
to the absolute joint positions, as a preprocessing step. Pre-
filtering is performed in the discrete QFT space to handle
jointly the three coordinate variables. Filtering is applied to
the absolute position of each joint separately. The transform
axisµ (see (8)) is selected here equal toµ =

√
3
3 i+

√
3
3 j+

√
3
3 k,

in order to treat equally the three dimensions. In the discrete
QFT domain, we apply a gaussian window:

G(u) = e−2( u
σ·T )

2

, (10)

with σ = 0.25. With this value ofσ and for u/T ≈ 1/10
(this corresponds to a continuous-time frequency equal to 1/5
of the sampling frequencyfs = 30Hz, i.e. 6Hz), the gaussian
reduces to

√
2/2. This means that we have a cut-off frequency

(-3dB half-bandwidth) equal to 6Hz, which is a reasonable
high frequency, even for fast motions such as in dancing.
Indeed, according to our experiments, the dance signals are
not practically affected. An example video, showing the effect
of pre-filtering to the dance MoCap data, can be found in the
Supplementary material.

3) Relative joint positions:The use of the 3D absolute
joint positions is possible for the evaluation task. However,
due to the global motion, the 3D absolute positions of the
joints (especially their low-frequency components) are highly
correlated. An example is given in Fig. 3(a). Consequently,in
order to make evaluations on a per-joint basis and subsequently
identify the joints which contribute more to the dancer’s

performance, it makes more sense to “subtract” the global
motion. Therefore, we use the joint positions relative to the
global dancer’s position:

pj(t) = pab
j (t)− pab

1 (t), j = 2, 3, . . . , J, (11)

wherepab
1 (t) is the torso’s absolute position, which contains

the global motion. An example is given in Fig. 3(b). We keep
the original torso position as a feature, lettingp1(t) = pab

1 (t).
There are, however, some issues to be discussed at this point:
I1) Notice that the relative joint positionpj(t) has still a
small amount of correlation with its parent’s joint position
(see 3(b)). For example, the left foot’s position is normally
slightly correlated with the left knee’s position. Therefore, if
robust and noise-free accurate tracking was guarantied, anever
more sensible approach would be to use the joint’s position
relative to its parent joint. However, this is not always the
case. For example, tracking of the knees is sometimes lost for
a few frames (due to self occlusions), while feet are correctly
tracked. In this case, subtracting the foot position from its
parent joint (knee) position would propagate noise/errorsto the
foot position, although it was robustly tracked. On the other
hand, the torso position (global position) is always robustly
tracked. Therefore, in order to avoid such error-propagation
situations and given that the joint-to-parent correlations are
not very high, we preferred to use the representation of (11).
I2) One could possibly opine that joints near the torso (e.g.
shoulders and hips) do not induce strong motion signals
relative to the torso. Thus, the underlying Signal-to-Noise
Ratio (SNR) will not be high and evaluation for such joints
will produce poor results. Therefore, these joints should not be
used (or they could be even used for a more robust estimation
of the torso position, as in [17]). We preferred however not
to use such heuristic arguments. Instead, we let the automatic
algorithms of section VII to decide whether and how much
these joints contribute to the dancer’s performance. Avoiding
such heuristics makes the evaluation approach more generic.

4) Relative joint velocities:In order to use the dynamics
of dancing movements, we consider also the instantaneous
relative velocities of the joints:

vj(t) :=
∂pj(t)

∂t
← pj(t)− pj(t− 1), j = 1, 2, . . . , J.

(12)
Notice that longer derivative filters (instead of[−1, 1]T) could
have been used for approximating the derivative. However,
according to our experiments, the lowpass pre-filtering of
subsection IV-B2 seems to be adequate for removing high-
frequency tracking-noise components.

5) Rigid transformations with the quaternionic dance rep-
resentations:Consider an original dance performance and its
rigid-body transformed version, which was obtained by scaling
the dancer byk, rotating about an axis~µ through an angleθ
and translating by~d. If the original dance is represented by the
quaternionic absolute joint positionspab

j (t), as in (9), then the
transformed version is expressed by (we dropj for notational
simplicity):

pab
RST(t) := k · R pab(t) R+ d, R = eµ

θ
2 , (13)
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Fig. 3. (a) Absolute position signals (Z component) of the left hip, knee
and foot for Betrand (professional dancer) in c2 t2. (b) The corresponding
relative positions. In each graph, signals were intentionally shifted in the
vertical axis, for better visualization. In (a), the quaternionic cross-correlation
coefficients are: hip-knee: 0.96, hip-foot: 0.92, knee-foot:0.96; In (b), the
quaternionic cross-correlation coefficients are: hip-knee: 0.64, hip-foot: 0.29,
knee-foot: 0.63. Similar values of correlation were observed for other dance
performances.

whereµ is the axis of rotation in a quaternionic representation
and R is a quaternion that expresses the rotation (for details
see Appendix A), whiled is a pure quaternion that expresses
the translation. Due to the linearities of (11) and (12), equation
(13) holds also for the relative joint positionspj(t), as well
as for the relative joint velocitiesvj(t).

6) Hierarchical representations:A powerful hierarchical
angular skeleton data representation is introduced in [17].
Although this representation scheme does not make use of
quaternions, we shortly present it here, since it is used in the
evaluation section. This scheme maps the skeleton motion data
to a set of 19 feature time-series. Three features, the yaw,
pitch and roll angles (Tait-Bryan angles) are defined for the
whole human’s torso, eight angular features are introduced
for the “first order joints”, i.e. elbows and knees and eight
angular features are introduced for the “second order joints”,
i.e. wrists and feet. Summarizing, the features are calculated
as follows: a) The orientation (three orthogonal axes) of the
torso frame is found by first estimating the vertical torso axis
(principal axis) via Principal Component Analysis (PCA) on
the torso’s joint positions and secondly finding the Left-to-
Right shoulder axis; b) Two angular features (azimuth and
elevation) are extracted for each 1st order joint by considering
a spherical coordinate system around its parent joint on the
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Fig. 4. Global temporal synchronization between Bertand c2t2 and Gabi
c2 t2: (a) The shortest captured sequence was NaN-padded at the beginning.
(b) After the estimation of the global time shift, one sequence is (circularly)
shifted and the common subsequence is extracted (red lines). See subsection
V-A.

torso; c) Similarly, two angular features are extracted foreach
2nd order joint by considering a spherical coordinate system
around its parent 1st order joint. For further details, the reader
is referred to [17].

This is a powerful representation, in the sense that it maps
the motion data into a relatively small set of features that
retains the salient aspects of motion. Moreover, the 1st and2nd
order joint features are invariant to rigid transformations. The
torso frames are not rotation invariant; however, they can be
straightforwardly used to estimate the global rotation between
two dance motion sequences. It is based on the assumption
that the points on the human torso (including neck, shoulders
and hips) do not exhibit strong independent motions, which
is a plausible assumption most of the times, but probably not
always. Additionally, the robustness of the 2nd order features
strongly depend on how robustly and accurately 1st order
joints were tracked.

V. TEMPORAL SYNCHRONIZATION AND SPATIAL

ALIGNMENT

A. Global temporal synchronization

The actors perform a specific choreography according to a
specific common audio sample. Therefore, ideally two perfect
performances (of the same choreography) should perfectly
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Fig. 5. (a),(b) Relative position signals (Z component) of all joints, for the professional dancer (Betrand c2 t2) and the amateur dancer (Gabi c2 t2). These
actually correspond to theZ component of the quaternionic arraysP(j, t) and Q(j, t) (subsection V-A). (c) The corresponding “all-joints” quaternionic
cross-covariance. The estimated time-shift isτmax = −34 frames.

match in motion signal shape, as well as in performance
speed. However, the Kinect captures were not synchronized
and the captured dancing sequences to compare do not have
the same length. Furthermore, the time instance at which the
tracking module detects the dancer and starts tracking is not
common. Thus, when comparing two tracked dances, normally
one constitutes a subsequence of the other. The objective isto
match and synchronize the two dances by finding the common
dance part that is present in both sequences. The steps of the
employed algorithm are summarized as follows:
S1) For each sequence, we keep only the frames in which
the dancer is tracked, i.e. the frames after the detection ofthe
dancer.
S2)We pad the shortest of the two sequences with NaN (Not-
a-Number) values, at the beginning.

An example result is shown in Fig. 4(a), where the relative
left-foot position of two dancers is presented, after padding the
shortest sequence with NaN values. It is important to highlight
that the padded NaN values are not taken into account in
the calculations that follow (15). Padding with NaN values
to produce dances with common length is only useful for
calculating (quaternionic) correlations using circular shifts. We
use only the relative joints positions information, although
velocities could be also useful. In order to handle jointly the
data for all joints, the algorithm continues as follows:
S3) Construct theJ × T pure quaternionic array

P(j, t) = [pv
1(t), p

v
2(t), . . . , p

v
J(t)]

T, (14)

wherepv
j (t) is the time-varying ofpj(t), rows correspond to

joints and columns to time (see Fig. 5(a),(b)).
S4)Calculate the modulus|Ctotal(τ)| of the “all-joints” quater-
nionic cross-covariance, as:

Ctotal(τ) =
1

J · T

J∑

j=1

T−1∑

t=0

P(j, t) Q(j, t− τ). (15)

S5) The lag τmax = argmax{|Ctotal(τ)|}, corresponding to
the maximum of the function, constitutes the estimate of the
time-shift between the dancing sequences (see Fig. 5(c)).

An example result is depicted in Fig. 4(b). When the
temporal shift is estimated and the dances are synchronized,
only the common subsequence (dance part that is present in
both sequences) is cropped from the sequences and used in
the evaluation task. This is illustrated in Fig. 4(b), whereone
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(b) Rotated Thomas vs Bertand

Fig. 6. Estimated rotation angles vs the actual (applied) ones in two relevant
experiments - See subsection V-B for details.

sequence is (circularly) shifted based on the estimated time
lag and then the common subsequence (red lines) is extracted.

It can be shown that the presented methodology for the
global temporal shift estimationτmax is approximately invari-
ant to rigid-body transformations (translation, scaling,rota-
tion). This was verified experimentally and it is proved in
Appendix B.

B. Fast spatial alignment

Given two dance sequences, which are assumed to be
similar except for an unknown rigid transformation (rotation,
scaling and translation, RST), their relative joint positions
pj(t) andqj(t) are related through (13) (with the equal sign
“=” replaced by the approx. equal sign “≈”). Inspired by the
ideas of [13], a simple algorithm for the estimation of the
transformation between the dances can be summarized as:
S1) The unknown translationd can be estimated by sim-
ply finding and subtracting the centroidspc = 1

J·T ·∑J

j=1

∑T−1
t=0 pj(t) andqc, respectively.

S2)Construct theJ ×T arraysP(j, t) andQ(j, t), as in (14).
S3)The unknown scaling factork is estimated from the ratio:

k ←
√

γ(|P(j, t)|)
γ(|Q(j, t)|) , (16)

where γ(|P(j, t)|) and γ(|Q(j, t)|) are the mean modula of
P(j, t) andQ(j, t), respectively.
S4) Compute the “all-joints” quaternionic cross-covariance
Ctotal(τ) from (15). Given that the sequences were already
synchronized, it is adequate to compute Ctotal(τ) only for zero
lag τ = 0, since there will be the peak position.
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S5) Compute the rotation angle and rotation axis from
the “eigen-phase”φ1 and “eigen-axis”µ1 of Ctotal(0) =
|Ctotal(0)|eµ1φ1 . Details for this step are given directly below.

Estimation of rotation angle:Practically, it is expected in
our application that the actual rotation is about theY -axis
(0, 1, 0)T. This corresponds to the quaternion axisj . Thus,
we actually search forφ that minimizes the mean squared
distance:

D(φ) =
1

R

R∑

r=1

∣∣∣eµ1
φ1
2 p(r)e−µ1

φ1
2 − ej φ2 p(r)e−j φ

2

∣∣∣
2

, (17)

wherep(r) are “test” randomly selected unit pure quaternions,
R = 20 for the experimental results provided below,φ1

and µ1 are the “eigen-phase” and “eigen-axis” of Ctotal(0),
respectively. In other words we search for the rotation angleφ
about theY -axis that has the same effect (in the MSE sense)
with the rotation aboutµ1 by φ1. The “test” pure quaternions
p(r) are obtained considering a zero-mean normal distribution
for each vector component and then normalization to unit
norm. The minimization ofD(φ) is realized via full search
in the φ space, with a search step equal to1 degree. Full
search does not introduce high computational times, because
the search space is1D.

It is straightforward to show the validity of the steps for
translation and scale estimation. The validity of the rotation-
estimation step is proved in Appendix B. Here, we give
some demonstrating examples. For the results of Fig. 6(a), the
dance performance “Gabi c2 t2” was scaled byk = 1.3 and
rotated about theY -axis through an angle from−45o to 45o.
Then, considering the respective “gold” performance of the
professional dancer Bertand, we estimate the scaling factor and
rotation angle using the above algorithm. The estimated value
for the scale factor waŝk = 1.21. The difference between
k̂ and the applied valuek can be partially justified by the
fact that Gabi is slightly shorter than Bertand (see Fig. 2(b)).
The estimated rotation angles vs the applied ones are given
in 6(a). Notice that the applied rotation is not strictly equal
to the actual one, because the original dances may be slightly
rotated each other. A similar example is given in Fig. 6(b),
where the scale factor was estimated equal tok̂ = 1.25. One
can verify that in both examples the estimated rotation angles
are close to the original ones, verifying the effectivenessof
the algorithm. This was the case for all tested dance pairs.

C. Local temporal synchronization

In a strict dance evaluation scenario, where a common audio
sample is considered, a perfect dance performance should not
deviate locally in phase from the “gold” one. In a looser
scenario however, small deviations in the dance speed, i.e.
small amounts of local de-synchronization, may be allowed
and therefore should not penalize the evaluation scores. On
the other hand, large local phase differences should always
not be allowed. To add such a flexibility in our approach, we
use Dynamic time warping (DTW) [28] to locally synchronize
two dance signals. DTW is a robust approach for measuring
distance between time series, allowing similar shapes to match
even if they are out of phase in the time axis. For details the

reader is referred [28]. Here we formulate the DTW approach
for our application.

In our case, we consider two pure quaternionic matrices
P(j, t) andQ(j, t), j = 1, . . . , J , t = 0, . . . , T − 1, as in (14).
To locally synchronize the sequences, we construct aT × T
matrix, where the element (t1, t2) of the matrix contains the
distance:

d(t1, t2) =
1

J

J∑

j=1

|P(j, t1)−Q(j, t2)|2. (18)

This is a distance metric that takes into account all joints.
As can be understood, this metric makes use of the distance
between pure quaternions and therefore could be written using
vectors notation. However, notice that at this point the dances
have been already spatially aligned using the method of
subsection V-B.

Consider a warping pathW that introduces a temporal
mapping betweenP(j, t) andQ(j, t), with thek-th element of
W notated aswk = (tk1 , t

k
2). Each candidate pathW satisfies

a set of conditions: a) The boundary conditionw1 = (0, 0),
b) Continuity, i.e. the allowable steps in the warping path are
restricted to adjacent cells and c) Monotonicity, i.e.tk1 ≥ tk−1

1

andtk2 ≥ tk−1
2 . We search for the warping path that introduces

the minimum total distance cost. Therefore, we calculate the
cumulative distance matrix (see Fig. 7(c)) and search for the
optimal path using dynamic programming, i.e. by following
the recursion:

γ(t1, t2) = d(t1, t2)+

min{γ(t1 − 1, t2 − 1)γ(t1 − 1, t2), γ(t1, t2 − 1)}. (19)

In order to prevent pathological warping paths, where a
relatively small time interval inP(j, t) maps onto a relatively
large time interval inQ(j, t) or vice versa, we use global
wrapping constraints [28]. Actually, since we should not
penalize only small amounts of local de-synchronization, we
allow the wrapping path to lie inside a relatively narrow band
along the diagonal (the Sakoe-Chiba band) of width equal to
±15 frames. The specific wrapping path constraint is realized
by setting the distanced(t1, t2) ← ∞ for |t1 − t2| > 15 in
(18). This is practically the same to setting the cumulative
distanceγ(t1, t2)←∞ for |t1− t2| > 15 in (19). The applied
Sakoe-Chiba band is highlighted in Fig. 7(c). An example of
local synchronization is shown in Fig. 7(a),(b).

DTW with hierarchical angular representations:
Since the hierarchical angular skeleton data representation of
[17] is also evaluated in this paper, we use DTW with this
representation as well. The employed approach is exactly the
same, with the difference that the distance metric of (18) is
replaced by a robust distance metric, as proposed in [17]. Let
F1(i, t) andF2(i, t), i = 1, . . . , 19 denote thei-th feature at
time t for the two dances to be compared, respectively. Then,
the distance metric is:

dHIE(t1, t2) =
1

19

19∑

i=1

d2r {F1(i, t1), F2(i, t2)}, (20)

where dr{x, y} = min{|x − y|, δ}. With the use of the
thresholdδ, the effect of outliers is minimized. Distances
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Fig. 7. The relative Z position of left foot for Bertand c2 t2 and Gabi c2 t2, (a) before and (b) after local synchronizationvia DTW. (c) The corresponding
cumulative distance matrix and the optimum path. The Sakoe-Chiba band along the diagonal, with width±15 frames, is highlighted by multiplying the values
outside the band by1.1.

larger thanδ do not introduce high penalties. In [17], the
appropriate selection ofδ is not discussed. After a lot of trial-
and-error experiments in order to obtain meaningful results,
we selectedδ = 35o in the experimental section.

VI. A UTOMATIC DANCERS’ EVALUATION

In this section we address the evaluation of a dancer,
compared to the “gold” dance of a professional. It is assumed
that the dances to be compared have already been globally
synchronized and spatially aligned (if necessary) using the
methodologies of subsections V-A and V-B, respectively. Ad-
ditionally, if small amounts of local de-synchronization are
to be allowed, the local temporal synchronization via DTW
(subsection V-C) is considered to have been applied.

In this section, three different evaluation scores are pro-
posed. These can be combined to produce an overall score, as
explained in paragraphs VI-A4 and VII-C. Two of them are
based on quaternionic signal processing, while the third one
is inspired by the optical-flow literature [29]. Additionally, a
score metric that is used with hierarchical angular representa-
tions [17] is discussed.

A. Proposed score metrics

1) Joints positions score:For each joint j, a score is
extracted by considering the modulus of the quaternionic
Correlation Coefficient (CC) between the relative position
signalspj(t) andqj(t) of the two dancers:

S1,j = |CCpos

j | =
|Cpos

j (0)|
√
σp
j · σ

q
j

, (21)

where Cj(0) is the quaternionic cross-covariance (see (6))
at zero lag (τ = 0) and σp

j , σq
j are the quaternionic auto-

covariances at zero lag. Notice that the auto-covariances are
scalar (real) numbers. Then, a total score is obtained as the
weighted mean of the separate joint scores, i.e.

S1(wpos) =

∑J

j=1 w
pos

j · S1,j
∑J

j=1 w
pos

j

. (22)

The weightswpos = {wpos

j }, j = 1, 2, . . . , J may be selected
equal to unity (uniform weights), or may be selected heuris-
tically, based on the significance of each joint in dancing
performance and/or the associated signal-to-noise ratio (SNR).
However, optimal weights can be found using a small training
set and following an optimization procedure. This approachis
discussed later in subsection VII-C.

2) Joints velocities score:It is straightforward to define
a score based on relative joint velocities, instead of their
positions, by taking the quaternionic CC for the relative joint
velocity signals. Let the score for each joint be denoted as
S2,j = |CCvel

j | (calculated similarly to (21)) and the all-joint
scores be denoted asS2(wvel).

3) 3D flow error-based score:For each frame, the relative
velocities of the joints can be seen as 3D motion (flow) vectors.
At this point, we drop the time-variablet, for simplicity.
Inspired by the2D optical flow literature [29], we consider
the normalized (unit)3D velocity vectors in homogenous
coordinates, i.e.

~s(~vj) =
[V xj , V yj , V zj , 1]

T

√
|~vj |2 + 1

. (23)

The idea is that apart from the3D displacement-per-frame
representation, the velocity may be written as a unit4D space-
time vector. The unit4D space-time vector~s(~vj) contains
information for both the speed and the direction of the 3D
motion. Therefore, using such a4D representation, one can
introduce convenient error or similarity measures that handle
large and very small speeds without introducing any amplifica-
tion/bias that would be inherent in 3D vector-based measures
(e.g. 3D vector differences or vector inner products).

Let for our application, the superscripts “p” and “a” stand
for the “professional” (ground-truth) and the “amateur” dancer,
respectively. In the computer vision literature [29], the inner
product~s(~vj

p) ◦ ~s(~vja) is used in the definition of the flow
Angular Error (AE) between~s(~vj

p) and~s(~vj
a). The inverse

cosine of this gives the flow AE, which is expressed in degrees
and is used as an evaluation metric for the difference (error) of
an estimated flow vector to the reference one (ground-truth).
Using the inverse cosine, the closer the estimated flow to
the ground-truth, the smaller the AE is. In our application
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however, we want to define a similarity measure, i.e. the
closer a 3D flow vector to the reference one, the higher the
corresponding (score) measure should be. Therefore, we drop
the inverse cosine, which is a non-linear decreasing function,
and we adopt a score metric as follows: Since the inner product
of two unit vectors is a number in the range[−1, 1], we define

S3,j =
1

2

(
~s(~vj

p) ◦ ~s(~vjq) + 1
)
, (24)

in order to have a score metric in the range[0, 1].
For a given framet, as an all-joints score we consider

the median alongj, S3(t) = medianj{S3,j(t)}, in order to
reject outliers, namely very wrong estimates due to skeleton
tracking inaccuracies. This way, we account that significant
differences between the professional’s (reference) flow field
and the amateur’s one may arise due to inaccurate skeletal
tracking and not due to actual differences in the dancing
performance. A total score for the whole choreography can
then be calculated as the mean or the median alongt. The
median-based score metricS3 = mediant{S3(t)} was used in
the experimental results provided in section VIII.

Notice that the score matric defined previously, does not
make use of quaternions and lacks rotation invariance. How-
ever, at this point we assume that the dances have been already
spatially aligned using the method of subsection V-B.

4) Combined score:Having defined three different score
metricsS1, S2 andS3, a combined score can be computed as
the weighted mean:

S(m,wpos,wvel) =
m1 · S1(wpos) +m2 · S2(wvel) +m3 · S3

m1 +m2 +m3
,

(25)
where m = {m1,m2,m3}. The estimation of the optimum
weightsm, as well as the calculation of appropriate weights
wpos andwvel is discussed in section VII.

5) Score metrics with hierarchical angular representations:
With the hierarchical angular representations, which are also
evaluated in section VIII, we use a score metric similar to the
one proposed in [17]:

SHIE =
1

19

19∑

i=1

si, si =
1

T

T−1∑

t=0

e
−
(

dr{F1(i,t),F2(i,t)}
σ

)4

(26)

where σ is a parameter that controls the allowed amount
of deviation from the expert’s performance anddr{x, y} is
the robust distance metric given in (20). The selection of
appropriate value forσ is not discussed in [17]. After trial-
and-error, we selectedσ = 30o for our experiments.

B. Quaternionic scores’ invariance to rigid transformations

One of the ideas behind using a quaternionic approach (for
scoresS1 andS2) in the presented application is that one can
handle the three coordinate variablesX , Y andZ jointly. This
has many benefits, such as (approximate) invariance to rigid
transformations, i.e. translation, scaling and more importantly
rotation. A proof of the quaternionic score’s invariance to
rigid transformation is provided in Appendix B. Here, a
demonstration example is given. For comparison purposes, let
us consider the case that theX , Y , Z components of the
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Fig. 8. Approximate invariance to rigid transformations ofthe quaternions-
based score. (a) A dance of Anne-Sophie-k is evaluated against the same dance
sequence, rotated about theY axis and scaled by1.4. (b) The performance
“Thomas c2 t2” is evaluated against “Bertand c2 t2”. The sameset of rigid
transformations is considered. The scoreS1,j , j = 15 (right foot) with respect
to the rotation angle is presented.

relative position signals are handled separately, providing three
separate scores that can be combined via a mean operation
(this would be similar to using a correlation metric that makes
use of the 3D vector inner product). It is almost evident that
the “X , Y , Z separately” approach is not rotation-invariant,
if one simply thinks that a rotation through an angle of
90o about theY (vertical) axis results into interchanging
the roles ofX and Z. On the other hand, the quaternionic
evaluation approach is invariant to rigid transformations, as
demonstrated by the diagrams of Fig. 8. For simplicity, only
the scoreS1,j , j = 15 (right foot) is calculated and presented.
Notice that (approximate) invariance of the single joint’s
score, suggests an even stronger invariance for the “all-joints”
score. In Fig. 8(a), a dance performance of Anne-Sophie-k is
evaluated against versions of the same performance, that are
scaled by a factor equal to1.4 and globally rotated about theY
(vertical) axis. The calculated score is almost independent to
the rotation angle, remaining very close to unity, as expected.
On the other hand the “X , Y , Z separately”-score reduces as
the rotation angle increases, as also expected. In Fig. 8(b), the
performance “Thomas c2 t2” is evaluated against “Bertand c2
t2”. The same set of rigid transformations is considered. The
quaternionic score remains almost constant, independently to
the rotation angle.

C. Additional issues

1) Instantaneous scores:The methodologies described
throughout the current section can be slightly modified, in
order to produce instantaneous scores. In a virtual dance-class
scenario, the calculation of instantaneous scores can serve to
highlight the time intervals (i.e. choreography parts) in which
the dancer’s performance is poor and requires improvement.
The extension of the methodologies is straightforward: With
respect to the total scoresS1 andS2, instead of considering the
relative joint position and velocity signalspi(t) or vi(t) for the
whole time intervalt ∈ [0, T − 1], one can use a time-sliding
gaussian window aroundt of length L. The instantaneous
scoresS1(t) andS2(t) around a time instancet0 are calculated
by applying locally the methodology, i.e. by considering the
varying parts ofpi(t) or vi(t) in t ∈ [t0 − L/2, t0 + L/2],
multiplying them with the gaussian window and calculating
the quaternionic correlation coefficient.
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Fig. 9. Instantaneous scores for Jacky c3 t2 vs Bertrand c3 t2- Right wrist. Left: The Relative positions for right wrist and the corresponding position-based
instantaneous score; Right: Relative velocities for rightwrist and the corresponding velocities-based instantaneous score. The instantaneous scores remain high
almost everywhere, expect for two time intervals where Jacky’s performance (with respect to the right wrist) gets worse.

The lengthL and the parameterσ of the gaussian (defined
as in (10), but witht in place ofu) have to be adequately
large, so that the signals’ statistics in a specific time-interval
to be adequately rich. In our application, taking into account
the Kinect frame rate of30fps, a reasonable choice forL
is 90 frames (3 sec) and forσ is 1. Going into details and
presenting extensive experimental results is beyond the scope
of this paper. However, experimental results are given in Fig. 9
which demonstrate the effectiveness of the discussed approach.
Notice that both position- and velocity-based scores present
valleys at time intervals where the dancer’a performance gets
worse.

2) Separate scores for the upper and lower body parts:
The idea of extracting a total score for the whole dancer’s
body, in order to identify whether he/she performs well, can
be extended in order to provide feedback to the amateur on
how he/she can improve the performance. The extension is
based on the idea that separate scores can be extracted for
different body parts, for example the upper and the lower body
parts. This is accomplished by simply considering separately
the upper and lower body joints and applying separately the
proposed methodologies.

VII. O BJECTIVE EVALUATION MEASURES AND WEIGHTS

OPTIMIZATION

A. Ground-truth data

The exploited dance dataset (Huawei 3DLife/EMC2 Grand
Challenge 2011) contains “ground-truth” evaluation ratings,
provided by Salsa dance experts. For each dance performance,
the experts provided ratings as integer scores between 1 and
5 (poor to excellent), over different evaluation axes, suchas
“Upper-Body Fluidity (UBF)”, “Lower-Body Fluidity (LBF)”,
“Musical Timing (MT)” and “Choreography (CH)”. Although
mapping to human-based dance evaluation criteria is a difficult
task, the proposed evaluation scores are related to all the above
criteria: The proposed scores are correlation-based metrics
and therefore, they constitute a measure of “similarity” of
the “dancing signals” being compared and the degree to

which they are synchronized to each other. Assuming that the
ground-truth ratings for the reference dance is “excellent”, it is
essential to consider that the presented automatically extracted
scores reflect “CH” (accuracy in executing a specific sequence
of dance steps) and “BF” performance, as well as “MT”.

In Table I we provide the available “ground-truth” scores for
choreographes c1 to c4, which are used in our experimental
results. In the last table column, the Average score is given,
obtained from the four different scores. The row tables are
sorted based on this Average score. For the same Average
score, sorting is based primarily on CH and secondly on MT.
The ranking of the dance performances in Table I constitutes
for us the ground-truth ranking, used throughout the rest of
the paper.

B. Objective evaluation measure

At this point we want to define an appropriate objective
measure that can be used for the evaluation of the proposed
automatically extracted scores. The mean squared difference
of the computed scores from the ground-truth Average scores
could be selected as such a measure. However, since many
factors are involved in the human-based objective evaluation,
our will is not to have automatically extracted scores that are
as close as possible to the ground-truth scores. Instead, we
want the automatic score-based ranking of the dancers to be
as close as possible to the ground-truth-based ranking of Table
I.

The number of “swapped pairs” [30] can be used as an
appropriate ranking-based objective measure. ForN dances,
the total number of dance pairs isNp =

(
N

2

)
. Given the

ground-truth ordering (ranking)Rgt and the orderingR(w)
for a given selection of parametersw, an ordering inversion
for a specific pair of dances occurs whenRgt and R(w)
disagree about the ordering of these two dances (discordant
pair). Let Q(w) be the total number of ordering inversions
introduced byR(w) andP (w) = Np −Q(w) be the number
of concordant pairs (not inversions). Therefore, an objective
evaluation function (to be minimum) can be defined as the
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number of ordering inversionsQ(w) over the total number of
pairsNp:

F (w) :=
Q(w)

Np

= 1− τ{R(w);Rgt}
2

, (27)

where τ{R(w);Rgt} := P (w)−Q(w)
P (w)+Q(w) is an adapted version

of Kendall’s τ function [30]. The objective functionF lies
by definition in [0, 1]. It can also be easily verified thatF
becomes equal to0.50 for “dummy” scores that produce
random ranking.

In Tables II and III, the objective measureF is notated as
“Obj.” and is given in percentage values %.

C. Weights optimization via PSO

The aim is to find the set of weightsw = wpos for
the position-based scoreS1(wpos) in (22) that minimizes the
objective function in (27), using an appropriate training set
with known ground-truth. As a training set, the choreographies
in sets c1 and c3 are used.

A variety of intelligent computing algorithms can be
adopted to calculate the optimal weights. In this work, the
Particle Sworm Optimization (PSO) method [31] was selected.
PSO is a global optimization algorithm, which is based on
a population-based stochastic-search approach to find good
solutions with regard to a given measure of quality (fitness
function, which in our case is the function in (27)).

There are some important issues to be addressed here.
The fitness function in (27) is a quite complicated function
with significant non-linearities, because it involves a sorting
operation (ranking). It also contains a large number of local
minima. Therefore, a stochastic-search method, such as the
PSO, seems to be appropriate, in order to avoid trapping in
bad local minima and finding a good one. Secondly, since
the objective function involves a sorting operation, its minima
correspond to flat regions (subspaces) of the multi-dimensional
search space. Namely, two neighbor points in the search space
may result into the same value of the objective function.
Additionally, the training set is very small to produce a
good and robust solution for the optimization problem. Only
9 recordings are available in the training set c1 and c3, a
quite small number compared to the total number of weights
J = 15.

For all these reasons, some simplifications have to be
made and heuristic information has to be embedded in the
optimization process: It is evident that there is not any specific
reason for the weights corresponding to the left-body joints to
be different from the weights that correspond to the right-
body joints. Additionally, the motion of legs and arms contain
much different pieces of dance information than e.g. those
of the head or the neck. Finally, joints near the torso (neck,
shoulders, hips, as well as neck and head), 1st order joints
(knees and elbows) and 2nd order joints (wrists and feet) are
assumed to present different SNR characteristics. Therefore,
the body joints were separated into six groups: TorsoT (global
motion), ElbowsE , KneesK, WristsW , FeetF and Other
O (joints near the torso, neck and head). The weights within
each of these groups were set equal to each other during the

optimization process, i.e.wi = wj = wO, ∀i, j ∈ JO, etc. In
other words, the dimensionality of the search space is reduced
to J1 = 6.

In our problem, each PSO particle of the population corre-
sponds to a set of weightsw = {wj}, j = 1, 2, . . . , J1. We
allow the population of particles to take values in the range
S = [0.2, 0.8]J1 (search space). In our experiments we use
totally I = 1000 particles. We also allow particle velocity to
be in the range[−0.5, 0.5]J1. Finally, the maximum number
of iterations in the PSO optimization procedure was set equal
to K = 100.

The PSOT Toolbox5 for MATLAB was used for weights’
optimization. Running multiple times the PSO algorithm, the
weights shown in the diagrams of Fig. 10(a) were obtained.
As mentioned, a specific minimum of the objective function
(even the global one) does not correspond to a single point of
the search-space and therefore it is essential that the obtained
weights in different trials are not exactly the same. However,
they are similar and most of them seem to correspond to
the same flat minimum-region of the search-space. Therefore,
during the evaluation phase (see experimental results) the
mean values of the per-trial weights were used. These are given
in the diagram of Fig. 10(a).

The following conclusions can be drawn: For the position-
based scoreS1(wpos), the global motion (torso) and 1st and 2nd
order joints are more-or-less equally significant and definitely
more significant than other joints. The relatively small value
for the weightwO makes sense if one thinks that head and
neck are not significant in dance, while joints near the torso
(shoulders and hips) do not induce strong motion signals
(relatively to torso) and thus they are probably characterised
by lower SNR values.

Exactly the same method, with the same parameter values,
was used to find the set of weightsw = wvel for the velocity-
based scoreS2(wvel). The results are presented in Fig. 10(b).
Similar conclusions can be drawn, with the difference that the
global motion (torso) is not significant here.

Finally, given the selected set of weightswpos and wvel, the
optimum set of weightsm = {m1,m2,m3} was found for the
combined score of (25). The same methodology was applied,
with the same set of parameters. The difference is that the
search space here is the 3-dimensional space[0.2, 0.8]3. The
results are presented in 10(c).

Notice that the weightswpos, wvel and m should ideally be
found jointly in a single optimization process. However, as
explained this seems to be impossible due to a) the non-
linearities of the objective function, b) the high dimensionality
of the problem and c) the small size of the training set.
However, even with the sequential optimization approach that
we employed, the combined score is significantly improved
compared to the separate scores, as can be verified in the
experimental section.

VIII. E XPERIMENTAL RESULTS

The automatic evaluation of something as subjective as
dancer performance is obviously an extremely difficult task.

5http://www.mathworks.com/matlabcentral/fileexchange/7506
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Fig. 10. The sets of weights obtained from multiple PSO optimization trials. For each weight, one bar corresponds to a different trial. The weights after each
trial were normalized to sum up to unity. a) The joint-groupsweights for position scoreswT , wO , wE , wK, wW andwF ; b) The corresponding joint-group
weights for velocities scores; (c) The score-metric weights m1,m2 andm3. In each graph, the weights used in the evaluation experiments (obtained from
the mean of all trials) are also presented.

TABLE II
AUTOMATICALLY EXTRACTED SCORES(UNIFORM WEIGHTS USED) AND THE CORRESPONDING

VALUES OF OBJECTIVE FUNCTIONS.

GT Without local synchr. (DTW) With local synchr. (DTW)
RANK SPOS SVEL SAE SCOM SHIE SPOS SVEL SAE SCOM SHIE

1 0.578 0.482 0.821 0.627 0.804 0.623 0.539 0.850 0.671 0.817
2 0.740 0.538 0.884 0.721 0.865 0.817 0.664 0.917 0.799 0.880
3 0.659 0.284 0.747 0.563 0.793 0.694 0.341 0.815 0.617 0.808
4 0.453 0.293 0.622 0.456 0.677 0.470 0.323 0.679 0.491 0.691
5 0.338 0.121 0.722 0.393 0.869 0.431 0.135 0.745 0.437 0.870
6 0.555 0.354 0.624 0.511 0.772 0.663 0.458 0.750 0.624 0.780
7 0.483 0.376 0.740 0.533 0.863 0.522 0.420 0.766 0.569 0.868
8 0.288 0.250 0.625 0.387 0.806 0.421 0.443 0.765 0.543 0.834
9 0.264 0.116 0.630 0.337 0.739 0.341 0.181 0.662 0.394 0.745

10 0.657 0.349 0.688 0.565 0.727 0.678 0.422 0.761 0.620 0.736
11 0.339 0.173 0.630 0.381 0.716 0.430 0.368 0.739 0.512 0.734
12 0.404 0.204 0.703 0.437 0.687 0.457 0.297 0.695 0.483 0.707
13 0.328 0.167 0.601 0.365 0.722 0.521 0.401 0.750 0.557 0.743
14 0.380 0.246 0.668 0.432 0.721 0.464 0.378 0.738 0.526 0.736
15 0.392 0.235 0.563 0.397 0.733 0.387 0.234 0.600 0.407 0.737
16 0.293 0.201 0.617 0.370 0.729 0.348 0.252 0.664 0.422 0.736
17 0.206 0.133 0.546 0.295 0.691 0.320 0.310 0.713 0.448 0.709

Obj % 25.7 27.9 24.3 22.8 27.9 24.3 33.1 25.0 27.2 26.5

TABLE III
AUTOMATICALLY EXTRACTED SCORES USING

OPTIMUM WEIGHTS AND THE CORRESPONDING
VALUES OF OBJECTIVE FUNCTIONS.

GT RANK SPOS SVEL SCOM

1 0.601 0.497 0.629
2 0.745 0.549 0.722
3 0.668 0.328 0.586
4 0.446 0.277 0.442
5 0.354 0.145 0.390
6 0.540 0.327 0.498
7 0.492 0.394 0.530
8 0.295 0.253 0.372
9 0.265 0.131 0.323

10 0.637 0.343 0.561
11 0.344 0.169 0.368
12 0.399 0.207 0.423
13 0.334 0.154 0.351
14 0.384 0.241 0.417
15 0.388 0.203 0.379
16 0.288 0.195 0.349
17 0.211 0.128 0.277

Obj. % 24.3 25.0 20.5

TABLE I
GROUND-TRUTH RANKING POSITIONS, BASED ON THE SCORES PROVIDED

BY EXPERTS.

GT RANK CHOREOGRAPHY UBF LBF MT CH AVERAGE

1 bertrand c3 t1 5 5 5 5 5.00
2 anne-sophie-k c2 t2 5 5 5 5 5.00
3 bertrand c4 t3 4 5 5 5 4.75
4 habib c2 t3 5 5 5 4 4.75
5 habib c1 t2 4 4 5 5 4.50
6 jacky c2 t1 3 4 5 5 4.25
7 jacky c1 t1 3 4 5 5 4.25
8 thomas c1 t2 4 4 4 5 4.25
9 ming-li c1 t2 3 4 4 5 4.00

10 habib c4 t2 4 3 5 4 4.00
11 habib c3 t2 4 3 5 4 4.00
12 thomas c2 t2 3 3 4 5 3.75
13 jacky c3 t2 4 3 4 4 3.75
14 habib c3 t1 5 3 5 2 3.75
15 ming-li c2 t1 3 3 4 4 3.50
16 ming-li c3 t2 3 3 4 2 3.00
17 thomas c3 t1 3 2 3 2 2.50

However, according to our experimental results, the presented
methodologies do produce meaningful results, in general. For
example, a) When comparing two different captures of a
professional dancer for the same choreography, the computed
scores are relatively high (see the 1st, 2nd and 3rd rows of
Tables I, II and III, which correspond to professional dancers).
Obtaining a high score in this case is essential, since a
professional dancer is able to perform almost identical dancing
movements in two different captures (see Fig. 2(a)); b) The

automatic scores-based ranking does not deviate significantly
from the one produced using the ground-truth ratings. This is
discussed in detail in the next paragraphs; c) As demonstrated
in paragraph VI-C1 and Fig. 9, the instantaneous scoresS1(t),
S2(t) show a similar behavior, presenting valleys at time
intervals where the dancer’s performance is poor.

A. Scores using uniform weights

A first set of experimental results is given in Table II.
The rows of the table are shorted according to the ground-
truth ranking of Table I. Therefore, the scores should ideally
be decreasing along each column. More specifically, Table
II presents the obtained relative position-based score (col-
umn “SPOS”), the velocity-based score (“SVEL”), the AE-
based score (“SAE”) of paragraph VI-A3, the combined score
(“SCOM”) of paragraph VI-A4, as well as the score of para-
graph VI-A5, which is based on hierarchical angular represen-
tations (“SHIE”). All scores are given both without and with
the local synchronization method (via DTW) employed. For
each set of scores, the objective evaluation functionF is finally
given (row “Obj %”). The experimental results presented in
this Table refer to uniform (all equal to unity) weightswpos,
wvel andm.

There are a number of conclusions that can be drawn:
C1) In all cases, local synchronization via DTW leads to
higher scores. This makes sense, since local phase differences,
which otherwise would penalize the scores, are compensated
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by DTW. Notice however that in the considered dance evalu-
ation scenario (Huawei 3DLife/EMC2 grand challenge 2011)
the dancers have to remain synchronized with the common au-
dio sample and thus to each other. The ground-truth data were
given for that scenario. Therefore, the use of DTW does not
improve the performance of the whole automatic evaluation
pipeline. This can be verified from the values of the objective
functionF (“Obj %”) with and without DTW. The objective
functionF goes worse for all kind of scores, except for scores
SPOS andSHIE, where a slight improvement is observed. In an
application scenario where good synchronization of the actors
is not a significant issue, DTW would be of great importance.
For example consider the scenario, where the objective is to
execute a sequence of dance steps without taking into account
the speed of execution. The automatic evaluation pipeline
should not penalize the user if her/his dance is slower or faster
in some intervals. The application of DTW in this case, would
compensate the local phase mismatches and the automatically
generated scores would be high, as they should be.
C2) Without local synchronization, according to values of the
objective functions, the best performance is achieved bySAE

andSCOM. With local synchronization, the best performance
is achieved bySPOS andSAE. The relatively good performance
of SAE could be partially explained by the median operation-
based rejection of outliers (see section VI-A3). Notice however
that the weights for all other scores were set equal to unity for
the specific set of experiments. When the appropriate set of
weights is used (see next paragraph) the performance of these
scores is improved.
C3) The hierarchical angular representation-based score
(“SHIE”) performs quite well according to the values of the
objective functions. However, it does not generally outperform
the proposed scores.

B. Scores using optimum weights

A second set of experimental results is given in Ta-
ble III. Specifically, Table III presents the obtained rela-
tive position-based score (column “SPOS”), the velocity-based
score (“SVEL”) and the combined score (“SCOM”), using the
weights found according to the method of subsection VII-C.
Additionally, all presented scores were extracted withoutap-
plying local synchronization via DTW.

The general conclusions that can be drawn are that a) the
weighted position- and velocity-based scores outperform all
scores that do not use weights (or use uniform weights),
presented in Table II; b) The combined score (“SCOM”), with
the use of appropriate weights outperforms all other scores.

IX. CONCLUSIONS

A novel methodology for the automatic evaluation of dance
performances was presented. The method is based on motion
acquisition via Kinect human skeleton tracking and the ap-
plication of appropriate quaternionic signal-processingtech-
niques for a) temporally synchronizing, b) spatially aligning
and c) “comparing” two vector “dance signals”. The proposed
quaternionic framework for MoCap dance signal analysis
presents some advantages, enabling for example the definition

of metrics that are invariant to rigid transformation and/or
the formulation of fast algorithms for the estimation of the
transformation parameters. The presented dance evaluation
results are promising and verify the effectiveness of the
proposed approach. We also presented experimental results
using hierarchical angular representations of skeleton data,
which can be found in the relevant literature [17], but have
not been previously extensively tested in a dance evaluation
task, such as the one addressed in this paper.

This work is used to support the realization of an on-
line dance studio, where a dance class is provided by an
expert and delivered to students via the web. Its adap-
tion/extension to handle other similar physical-activitysce-
narios in tele-immersive environments is straightforward.
Furthermore, although not straightforward, the introduced
quaternions-based processing framework, endowed intrinsi-
cally with rigid-transformation invariance, could be adapted
to the more general problem of human motion analysis.
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APPENDIX

A. Additional notes on quaternions

Given a pure quaternionp, any quaternion q can be de-
composed into a parallel (top) part and a perpendicular part,
denoted as q‖ and q⊥, respectively.

Quaternion multiplication is generally non-commutative.
However, parallel quaternions (quaternions with parallelvector
parts) commute. Additionally, ifp is a pure quaternion and q
is a quaternion withV(q) ⊥ p, then multiplication reordering
is possible through: qp = pq.

Unit quaternions provide a convenient mathematical nota-
tion for expressing rotations in the 3-D space. The rotationof
a quaternion q about a 3D unit axisµ (unit pure quaternion)
and through an angleθ, is expressed as R qR, where R= eµ

θ
2 .

B. Invariance to rigid transformations

The objectives here are to show that: a) The positionτmax of
the maximum of|Ctotal(τ)| in (15), and thus the methodology
in subsection V-A for the estimation of the global temporal
shift, is invariant to rigid-body transformations (translation,
scaling and rotation); b) The methodology in subsection V-B
is valid, i.e. the global rotation (rotation axis and angle)is
encoded in the phase of Ctotal(0); c) The adopted quaternionic
scoreS1 (see (21)) is invariant to rigid-body transformations.
The same conclusions can then be drawn for scoreS2.

Consider the quaternionic relative-position “dance” signal
p(t) of the j-th joint and its transformed versions (we dropj
for notational simplicity):

pR(t) := R p(t) R, pRS(t) := k · R p(t) R,

pRST(t) := k · R p(t) R+ d, (28)

where R = eµ
θ
2 , k a real-number scaling factor andd a

pure quaternion. These versions correspond to only-rotation,
rotation+scaling and rotation+ scaling+translation ofp(t).
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Showing that the methodologies are invariant to translation
and scaling is almost straightforward, because quaternionic ad-
dition and scalar-with-quaternion multiplication do not present
any differences from those in complex number theory. More
specifically, by decomposing the signalsp(t) andpRST(t) into
their varying and constant (centroid) parts, from (28) we have:

pv
RST(t) + pc

RST = k · R [pv(t) + pc] R+ d = k · R pv(t) R+ d1,
(29)

whered1 = R pc R+d. Since the centroids of the quaternionic
signals are subtracted (the cross-covariance is used in the
calculation of scoreS1 and the matrix in (14) contain only the
varying parts), a spatial shiftd does not affect the proposed
methodologies. Therefore, from now on we consider that
the quaternionic signals are zero-mean (zero-centroid) and
therefore ignore any translationd.

The invariance of the proposed quaternionic scoreS1 (see
(21)) to scaling can now be shown. Considering the auto-
covariance (at zero lag) in the denominator of (21), we have:

σpRS
:=

1

T

T−1∑

t=0

pRS(t) pRS(t) =
1

T

T−1∑

t=0

k · pR(t) k · pR(t)

= k2
1

T

T−1∑

t=0

pR(t) pR(t) = k2 σpR
. (30)

Similarly, for the nominator of (21), it holds:

C(0) := C{p(t), pRS(t)}(0) =
1

T

T−1∑

t=0

p(t) pRS(t)

=
1

T

T−1∑

t=0

p(t) k · pR(t) = k · C{p(t), pR(t)}(0). (31)

Consequently, using (30) and (31), for the scoreS1 in (21)
one can conclude:

S1{p(t), pRS(t)} :=
C(0)

√
σp · σpRS

=
k · C{p(t), pR(t)}(0)

k · √σp · σpR

= S1{p(t), pR(t)}.

(32)

Therefore, the adopted scoreS1 is invariant to scaling.
Similarly to (28), let us denotePRS(j, t) = k ·R P(j, t) R =

k · PR(j, t). Now consider Ctotal(τ) in (15). We have:

CRS
total(τ) =

1

J · T

J∑

j=1

T−1∑

t=0

P(j, t) PRS(j, t− τ)

= k · 1

J · T

J∑

j=1

T−1∑

t=0

P(j, t) PR(j, t− τ) = k · CR
total(τ).

(33)

Thus, scaling of a dance just introduces a scaling to Ctotal(τ).
Therefore, the positionτmax of its maximum does not change
and the methodology in subsection V-A is invariant to scaling.

Now, we can show that the adopted quaternionic methodolo-
gies are approximately rotation-invariant. In order to proceed,

we begin with the pathological case, in which the quaternionic
signalp(t) is constant over time, i.e.p(t) = p. The signal

pR(t) = R p R = eµ
θ
2 p e−µ

θ
2 (34)

can be considered as an appropriately rotated version ofp(t),
given by a rotation through some angleθ, about an axisµ ⊥ p.
The quaternionic cross-covariance in this case equals:

C{p(t), pR(t)}(0) =
1

T
· T · p eµ

θ
2 p e−µ

θ
2 , (35)

which by removing the conjugate and canceling terms simpli-
fies to:

C{p(t), pR(t)}(0) = −p eµ
θ
2 p e−µ

θ
2 . (36)

Sinceµ ⊥ p, it also holdsV(eµ θ
2 ) ⊥ p. Therefore, the mul-

tiplication reordering rule qp = pq (see previous subsection)
applies. Additionally, sincep is a pure quaternion, it holds
p p = −|p|2. Therefore:

C{p(t), pR(t)}(0) = −p p e−µ
θ
2 e−µ

θ
2 = |p|2 · e−µθ. (37)

In this case|C{p(t), pR(t)}(0)| = |p|2. Given that the modulus
of the cross-covariance is used in the adopted score’s defini-
tion, the proposed evaluation scoreS1 is rotation-invariant.
As for the general case, where the signalsp(t) andpR(t) are
not constant, the rotation (phase) between individual signal
samples is summed over the whole time interval[0, T − 1],
making the scoreS1 practically approximately invariant to
rotation. This was also demonstrated in Fig. 8.

Now, consider the covariance

CR
total(τ) =

1

J · T

J∑

j=1

T−1∑

t=0

P(j, t) PR(j, t− τ).

As previously, assume the pathodolgical case whereP(j, t) =
P(j) is constant alongt and follow exactly the same argu-
ments. One can then conclude (we considerτ = 0, without
loss of generality) to:

CR
total(0) =


 1

J

J∑

j=1

|P(j)|2

 · e−µθ, (38)

similarly to (37), whereµ andθ are the rotation axis and angle.
This means that rotation introduced just the phase factore−µθ

and thus|CR
total(0)| = |Ctotal(0)|, meaning that the methodology

in subsection V-A is invariant to rotation.
More importantly now, notice that CRtotal(0), as any quater-

nion, can be written in its polar form:

CR
total(0) = |CR

total(0)| · eµqφq, (39)

where µq and φq are its “eigen-axis” and “eigen-angle”,
respectively. Equating the right-hand sides of (38) and (39),
we have:


 1

J

J∑

j=1

|P(j)|2

 · e−µθ = |CR

total(0)| · eµqφq. (40)

Consequently, the rotation axisµ and angleθ can be estimated
by calculating CR

total(0) and computing its eigen-axisµq and
eigen-angleφq, as proposed in subsection V-B. As for the
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general case, where the signalsP(j, t) are not constant along
t, the rotation between individual signal samples is summed
over the whole time interval[0, T − 1] and for all jointsj.
In this case, CRtotal(0) effectively encodes the global rotation
transformation, as demonstrated in Fig. 6. Similar facts have
been also been demonstrated in [13] for estimating the global
color-space rotation between color images.
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