

RAAT – The Reverie Avatar Authoring Tool
A JavaScript library for designing online 3D character creator software

K. C. Apostolakis and P. Daras
Information Technologies Institute

Centre for Research and Technology Hellas
Thessaloniki, Greece

kapostol@iti.gr, daras@iti.gr

Abstract—avatar embodiment within the World Wide Web has
gained a lot of popularity in recent years thanks to the
introduction of networked virtual environments created for
socialization and entertainment purposes. As each of these
virtual worlds generates a unique set of user requirements
concerning representation preferences based on the
environment’s context, it becomes clear that every attempt at
creating such virtual worlds should encourage the development
of the appropriate avatar authoring tools, being based on a
thorough study of avatar desirable features. The Reverie Avatar
Authoring Tool (RAAT) introduced in this paper helps
developers address these ever-emerging avatar feature
requirements, allowing them to easily set up and design online
character creation applications, tailored to the virtual
environment specifications. Summarizing the design process to a
simple task of documenting the application interface within a
single script, RAAT encapsulates the demanding tasks of
character creation within simple function calls, while also
offering a web-based real-time solution for photorealistic
integration of user physical appearance onto the character mesh.

Keywords—3D Avatar; Avatar customization; Virtual world;
Browser software

I. INTRODUCTION

Since the introduction of the World Wide Web, a lot has
changed, both within the web itself, as well as how the
everyday average user connects and interacts with its content.
As hardware cost and size decreases in a steady rate that allows
users to access the web through innovative web browsing
hardware devices, such as smart phones and tablets, so do web
technologies need to mature and take advantage of hardware
accelerations and multimedia support, while definitively
departing from the more traditional software package
installation requirements. Recent developments in web
technologies, such as HTML5, WebGL, CSS3, Microsoft
Silverlight, and many others, have led web developers to enrich
websites with stunning interactive 3D graphics, ranging from
simple embellishments to full-blown commercial applications
featuring interactive virtual environments, examples of which
include 3D browser games, virtual tours to remote real-life
locations, and networked virtual worlds setting the stage for
social interaction between remote users. In the latter sense,
users cease to merely exist as static profiles, but rather embody
a customizable representation of one’s self, a virtual entity
otherwise known as an avatar.

Figure 1. Examples of character creator web based applications created with
the Reverie Avatar Authoring Tool. Both pages are displayed using Google
Chrome web browser.

Avatars, representation of which range from simple 2D
graphical images to fully rendered and textured 3D models,
have been deployed to populate networked virtual
environments for quite some time (such as the highly popular
social 3D virtual environments Second Life1 and IMVU2), and
gradually, major players in the video gaming and network
solutions industry have come to adopt avatars as a means for
their users to personify themselves, examples including
Nintendo’s Mii’s, Microsoft’s XBOX Live Avatars and
Yahoo’s Avatars. Furthermore, users have shown to respond

This work was supported by the European Commission under contract
FP7-287723 REVERIE (http://www.reveriefp7.eu).

1 http://www.secondlife.com
2 http://www.imvu.com

overwhelmingly well to the idea of creating, owning and caring
for their very own 3D virtual identity [1] [2], and will even
consider the actual purchase of virtual ornaments (such as
clothing, props, hairstyles, and in some cases, virtual pets) in
order to ensure their avatar is unique, easily identifiable and
special [3].

As networked cyberspaces inhabited by virtual characters
steadily grow to become a frontier in social computing, it
becomes apparent that certain tools will need to be made
available for both developers and users to encourage the
continued interest in creating and inhabiting such shared virtual
environments. Designing the tools for avatar creation however,
requires prior thought on several factors that might influence
how users will interact with the virtual environment and its
inhabitants, as well as how they will react towards, and bond
with their own incarnation within this virtual world. Different
needs of representation will arise within a virtual environment
geared towards an adult audience with a focus on socialization,
in contrast to massively multiplayer on line games where
character features and visual traits are sometimes intentionally
exaggerated, unrealistic and blown out of proportion. Taking
all of the above under consideration, it’s safe to say that no one
current solution exists that can cover all of the possible user
requirements in the process of avatar creation. Each new
networked virtual environment will generate its own content-
based context, and target a different group of users with
varying demands and expectations concerning the appeal of
their virtual personalities. As a result, with each new virtual
social environment, a new daunting task of designing and
developing avatar authoring tools will emerge, adding to the
overall complexity of the development plan.

In order to address this issue, and offer a solution that
greatly simplifies the authoring tool design process, in this
paper we introduce the Reverie Avatar Authoring Toolkit
(RAAT), an open source JavaScript software library that
allows developers to easily design online interactive character
creation software, tailored to the exact needs of the hosting
networked virtual world. The library includes pre-defined user
interface controllers for loading and manipulating multi-part
character geometry directly on the client-side, and comes with
a set of server-side tools that allow users to facilitate their own
visual appearance onto the character using Active Shape
Models [14]. As the design process is reduced to a simple task
of modifying a single template file script, RAAT-powered
avatar creator software serve as a prime example of how the
latest Web technologies can support the creation of an
attractive, competitive software package that draws its strength
from simplicity, adaptiveness, portability and zero user-end
prerequisites concerning both physical memory space as well
as installation times.

The remainder of this paper is organized as follows. In
Section 2, an overview of the RAAT library is presented along
with a brief summary of recent related work, while Section 3
documents the RAAT library software components for a
comprehensive overview of the library-powered software
structure. Section 4 finally concludes this paper along with
some insight on future work.

II. BACKGROUND AND RELATED WORK

In general, studies have suggested that the process of avatar
creation could lead to users forming a stronger sense of self-
presence and psychological closeness to the created character
[4]. Much of the related literature on avatar creation
methodologies focuses on research on the fields of automatic
mesh deformation and modeling [7] [8] as well as user
reconstruction [9] [10], in an attempt to create faithful
representations of the user’s physical appearance and integrate
those onto the virtual character geometry. The idea behind such
attempts is that users are more likely to relate to a virtual
character that closely resembles their own appearance, enabling
a higher sense of presence. Moreover, automatic methods for
the retrieval of the user’s shape and appearance greatly enhance
usability of such systems. As the human face is one of the most
easily recognizable and expressive features of the human
visage, many researchers have studied ways to transfer the
facial likeness of people onto the avatar’s face using
photographs [8] [11] [12] [13]. Many of the reported results
have been adopted onto commercial and open-source
applications, with various degrees of customization options and
tools to accomplish the desired effect.

However, studies show that not all virtual environments are
driven by the same needs for avatar representation, meaning,
some features are more desirable than others in specific
situations. The way the avatars look in terms of realism,
multitude of customization options and more importantly, their
relation to the context (i.e. how the avatar’s look and feel
matches that of the virtual environment it’s intended to
populate) all have an impact on how well users receive the
experience of being able to customize their own virtual identity
[5]. However translating user needs in terms of context is a
complex, yet viable task, in order to ensure users will preserve
an interest in investing both time and caring to their virtual
representation, and as a result the virtual environment in
general. Design choices, such as being able to incorporate
realistic visual features onto the appearance of the character, or
rather select features from a wide range of pre-made assets
have to rely on how much effort users feel they should invest in
creating the character, as well as their intention to share
personal information, such as their physical appearance. For
example, realistic representations of oneself are more
preferable in environments, where virtual presence is closely
related to social interaction and communication, as is the case
with teleconferencing, while online game users on the other
hand have been shown to appreciate a more generic, less
realistic look that leaves more room for imagination [5] [6].

RAAT is a JavaScript library that allows developers to
quickly design and set up every viable component of a
complete avatar authoring engine. Such components include
the graphical user interface (GUI) elements which serve as the
main interaction dialog between the user and the authoring
engine, as well as 3D scenes, objects and renderers serving the
purpose of real-time visualization. As the entire math
associated with rendering, projection and lighting calculations
is handled by the underlying JavaScript 3D Library Three.js1,
all of RAAT’s functionality and generation of WebGL
primitives is encapsulated within comprehensible
representations of parameterized object classes, such as 3D

1 Three.js library available at http://mrdoob.github.com/three.js/

Figure 2. Structure of a typical RAAT-powered character creator software.

viewers, texture composers, GUI windows and multi-part
character meshes. Being powered by Three.js, which features
support of sophisticated rendering techniques, such as
hardware-accelerated graphics and post-processing rendering
effects, RAAT encourages developers to focus on more
creative aspects, such as manipulating the GUI layout, provide
or limit functionality, where deemed necessary, and ultimately
modeling the 3D base mesh to be parameterized using the end-
user application. As Three.js provides a wide range of mesh
format file loaders in order to introduce externally created
content into the virtual scene that serves as a canvas for RAAT
to display and deform character meshes on, in a nutshell,
RAAT can be viewed as a powerful external add-on to the
Three.js library, allowing developers to easily and quickly set
up fully functional impressive character creation software,
tailored to the exact needs and visual style of the web
application intended to use the created content.

In addition to being a powerful asset for designing avatar
creation applications, RAAT benefits from the added value of
being completely based on current web technology, meaning
that the resulting software can be directly hosted on an ordinary
website, requiring no prior download or installation procedure
to be performed by the users before being able to create their
characters. RAAT’s object-oriented design allows it to be
easily integrated into virtually any HTML5 webpage, while
offering web developers the basic tools with which a character
mesh can be loaded, customized and exported, encapsulating
the entire graphical user interface into a single HTML division
section (div), that can be easily placed anywhere within the
page body, and styled to preference using standard CSS styling
sheets.

III. LIBRARY COMPONENTS AND SOFTWARE STRUCTURE

The RAAT software library consists of a number of
components, whose principal role is to encapsulate most of the
internal functionality inside a shell consisting of simple
function calls, as has been described in the previous Section.
Software powered by the RAAT library consists of a number of
files, some of which need to be specified by the developer
designing the end-user application. The core library itself is
comprised of the client-side JavaScript code contained within
the minified core scripts containing all of the abstract classes
for the GUI elements, as well as a number of auxiliary image

processing algorithm implementations for texture manipulation
at pixel level. The minified scripts are intended to be included
within the HTML script along with a Template JavaScript file
that has been appropriately modified by the application
developer, and documents the overall structure and
functionality of all GUI elements while setting up identifiers
for styling with complementary external CSS scripts.

On the server-side, RAAT can communicate via PHP with
a standalone ASM fitting application. The functionality is
provided for avatar authoring software where user
representation via photorealistic data is determined to be a
welcome feature. If desirable, the application will
automatically process and generate mesh geometry and texture
data obtained from photographs, in a similar fashion to [12]. A
graphical representation of a typical RAAT-powered character
creator software architectural structure can be seen in Figure 2.

A. Core Functionality

RAAT core functionality at the client-side is organized
within two minified JavaScript files, dubbed imgproc (Image
Processing) and raat. The first provides a number of auxiliary
functions to the latter, intended for texture manipulation at
pixel level, most notably whenever photographic data is used to
incorporate user appearance to the character mesh. This
process requires textures to be created and seamlessly blended;
while a recoloring operation might be applied to ensure overall
character skin tone matches the photographed skin color.

As described in the previous Section, RAAT is comprised
of a number of methods that encapsulate the majority of the
library’s functions into a set of comprehensive component
classes and function calls. The base set of these classes
includes:

• 3D Viewer – The 3D Viewer class contains everything
related to the real-time 3D rendering environment for
visualization of the character. A call to the 3D
Viewer’s constructor will setup the scene, lighting,
camera and WebGL renderer and create controls for
navigating the environment with the mouse.

• Character Canvas – Since a virtual character may be a
compilation of different meshes (for example, body,
hair, clothing, etc.), the Character Canvas class
contains information about the mesh structures that
comprise the final character, and offers a simple
interface with which to cause mesh geometry to
deform using pre-defined morph targets (such as
increasing a character’s body mass to generate a more
chubby character). Developers are responsible to
provide their own mesh files and corresponding morph
target data, according to the virtual environment
context.

• Window – The Window class creates an HTML
division element that can be styled to preference using
CSS and can contain any number of stylizable interface
elements for users to interact with the creator, such as
interactive buttons, draggable sliders and file
uploaders.

Figure 3. Code example of the RAAT Template file. This particular example
sets up a 3D Viewer and a buttons panel, each button responsible for calling a
Window class with extended functionality. Here, the first Window offers two
buttons to select gender of the character, while the other two are similar in
structure, offering options for Clothing and Hairstyle meshes to be added to
the Character Canvas.

The above components are strategically placed within the
HTML document using a template script that summarizes the
overall software design into a set of Window class function
calls. An example of a simple avatar creator application design
via the template file is presented in Figure 3. It is the developer
duty to ensure the consistency of all interface elements defined
in the template and their respective functionality. This type of
structure allows developers to quickly and effortlessly create,
test and make changes to the character creator software, by
simply altering the code written in the template file.

B. Server-side processing

In cases where user capturing and appearance integration
onto the character mesh is desirable, RAAT core JavaScript
code contains two more abstract classes that can issue requests
to the host server via PHP, in order to send and obtain data

Figure 4. Overview of the ASM fitting and geometry/texture generation
process. A frontal face image is provided by the user to which a best fit is
determined (a). The 2D model vertices are used to generate a visible geometry
structure and at the same time serve as UV coordinates for the texture-baking
mesh (b). Vertices of the model are then manipulated and a texture is baked
(c) before being applied onto the final character mesh (d).

from the ASM fitting application asm_fit. This application was
written in C++ using OpenCV 2.3.11 and asmlibrary 6.02, and
uses Viola-Jones classifier cascade [15] XML files and pre-
built ASM data files, trained to automatically fit mesh vertex
data to detected instances of desired object within a photograph
or image. Web developers may choose to enable this
functionality, by initializing instances of the following two
classes within the template file:

• Photo Texture Graphical User Interface – This GUI
class is structurally similar to the 3D Viewer, in that it
creates a 2D rendering environment for viewing fitting
geometry results on top of the user-specified image.
The class contains functions that enable web camera
streaming and snapshot capturing, and is responsible
for sending the raw image data, issuing the call to the
asm_fit application via PHP using the correct set of
input parameters (concerning which Haar cascade file
and which ASM data file to use). The server-side
application responds by sending back the fitting results
in JavaScript format to generate mesh geometry
(vertex buffer) in real-time. This mesh is subsequently
sent to the Photo Texture component for generating the
final texture, as is described on the bullet below.

• Photo Texture Composer – This class is responsible for
rendering (“baking”) the end result textures within a
second, hidden 2D rendering environment, using the
mesh obtained from the Photo Texture GUI
component. Baking of the texture is achieved by
projecting the mesh’ original UV coordinates to the 2D
scene as vertex data and in a vice-versa manner project
its vertex buffer as UV coordinates. This procedure
ensures that the original format of the texture is not
altered, to keep texture files consistent and usable
outside the scopes of RAAT (for example, adding in-
game texture layers to user-created characters, such as
blood splatters in action game networked
environments).

1 OpenCV library available at http://opencv.willowgarage.com/wiki/
2 asmlibrary 6.0 available at http://code.google.com/p/asmlibrary/

setup: function (parentID, x, y, width, height) {

// create 3D viewer

this.viewer = new RAAT.Viewer3D(“areaWebGL”, width, height);

// main buttons window

var elements = [{
interfaceType: “interactiveButton”, id: “b1”, html: “New Character”,

javascript: function () {settings1.div.style.display = “block”;

}}, {
interfaceType: “interactiveButton”, id: “b2”, html: “Clothing”,

javascript: function () {settings2.div.style.display = “block”;

}}, {
interfaceType: “interactiveButton”, id: “b3”, html: “Hairstyle”,

javascript: function () {settings3.div.style.display = “block”;

}}];
this.toolkit = new RAAT.Window(this.viewer, “panel”, null, 84, 222,

true, elements);

// -1: new character dialog window

var elements1 = [{

interfaceType: “exitButton”, id: “ex”, html: “X”,
javascript: function () {settings1.div.style.display = “none”;

}}, {

interfaceType: “interactiveButton”, id: “b4”, html: “Male”,
javascript: function () {Template.viewer.setupMesh(“male.js”, 0);

}}, {

interfaceType: “interactiveButton”, id: “b4”, html: “Female”,
javascript: function () {Template.viewer.setupMesh(“female.js”, 0);

}}];

var settings1 = new RAAT.Window(this.toolkit.div, “dialog”, “New
Character”, 148, 148, false, elements1);

// -2: Clothing dialog window
var elements2 = [{

interfaceType: “exitButton”, id: “ex”, html: “X”,

javascript: function () {settings2.div.style.display = “none”;
}}, {

interfaceType: “interactiveButton”, id: “b6”, html: “No Clothes”,

javascript: function () {Template.viewer.deallocateMesh(1);
}}, {

interfaceType: “interactiveButton”, id: “b7”, html: “Suit”,

javascript: function () {Template.viewer.setupMesh(“suit.js”, 1);
}}];

var settings2 = new RAAT.Window(this.toolkit.div, “dialog”, “Clothing”,

148, 148, false, elements2);

// -3: Hairstyle dialog window

var elements3 = [{
interfaceType: “exitButton”, id: “ex”, html: “X”,

javascript: function () {settings3.div.style.display = “none”;

}}, {
interfaceType: “interactiveButton”, id: “b8”, html: “NoHair”,

javascript: function () {Template.viewer.deallocateMesh(2);

}}, {
interfaceType: “interactiveButton”, id: “b9”, html: “Hairstyle 1”,

javascript: function () {Template.viewer.setupMesh(“hairstyle_1.js”, 2);

}}];
var settings3 = new RAAT.Window(this.toolkit.div, “dialog”, “Hairstyle”,

148, 148, false, elements3);

},

Figure 5. Photographic Texture Composer Example

For example, a frontal face detector can be used to identify
the presence of a user’s face when webcam video streaming is
enabled, and a best fit is determined to generate the mesh
geometry that appropriately represents the user’s facial shape,
and simultaneously retrieve UV coordinates to apply the
photorealistic texture. The pipeline of the described process can
be seen in Figure 4. In a similar way, any combination of Haar
cascade files and pre-trained ASM data files can be used to
generate mesh and texture data for different body parts, such as
the head profiles, the eyes, the ears, hands, upper body, etc. An
example is presented in Figure 5, where users capture a frontal
(a) and profile (b) image of their heads to generate a full
character head texture and recolor the body skin tone
accordingly (c). The end result is then applied onto the
character mesh (d). For a complete and comprehensive
overview of training Haar cascade classifiers, as well as
generating appropriate ASM data files, readers are referred to
the respective OpenCV and asmlibrary documentation files.

IV. CONCLUSION

In this paper, the Reverie Avatar Authoring Tool, a library
intended to help web developers design online character
creation software was described. RAAT is a powerful tool for
quickly generating 3D character authoring software, and offers
developers the tools necessary to set up crucial software
components, such as real-time character renderers, graphical
user interface tools and photorealistic texture composers.
Thanks to the library’s simple structure, developers are only
eligible to create and add character mesh files according to the
virtual environment’s context, and are simply required to set up

their application’s structure using a simple template script that
contains the entire software functionality. The resulting
character creator application can be easily uploaded and hosted
via HTTP servers, styled to preference using external CSS
files, and easily modified at will, by making changes to the
aforementioned template script. Lifting the burden of handling
the intrinsic math behind the procedures implemented within
RAAT, creativity and imagination are all that developers need
in order to create stunningly looking online character creation
applications in no time.

With the library’s ease of use and majority of pre-built
options, we expect RAAT to be welcomed as a prime solution
to the challenge of creating online avatar authoring applications
as an added asset of setting up a new networked virtual
environment. Already, RAAT is intended to power the
character creation tools for the FP7 3DLife and REVERIE
projects. Future work will focus on adding features such as
real time puppeteering of the created avatars via virtual
mirroring, as well as full 3D reconstruction of users by utilizing
support of the Microsoft Kinect sensor.

REFERENCES

[1] D. I. Cordova, M. R. Lepper, “Intrinsic motivation and the process of

learning: Beneficial effects of contextualization, personalization and
choice”. Journal of Educational Psychology, 715-730, 1996.

[2] S. Lim, “The effect of avatar choice and visual POV on game play
experiences”. Unpublished Disertation, Stanford University, California,
2006.

[3] D. Chung, “Something for nothing: understanding purchasing behaviors
in social virtual environments”. CyberPsychology & Behaviour 6, 538-
554, 2005.

[4] D. Chung, B. deBuys, C. Nam, “Influence of avatar creation on attitude,
empathy, presence and para-social interaction”. Human-Computer
Interaction, Interaction Design and Usability, 711-720, 2007.

[5] M. Boberg, P. Piippo, E. Ollila, “Designing avatars”. In proceedings of
the 3rd international conference on Digital Interactive Media in
Entertainment and Arts, pp. 232-239, ACM, 2008.

[6] N. Ducheneaut, M. H. Wen, N. Yee, G. Wadley, “Body and mind: a
study of avatar personalization in three virtual worlds”. In proceedings
of the 27th international conference of Human factors in computing
systems, pp. 1151-1160, ACM, 2009.

[7] M. Bastioni, M Flerackers, “MakeHuman: Open source tool for making
3d characters”. 2007.

[8] J. Lee, Y. S. Choi, B. K. Koo, C. J. Hwang, “An intuitive system for 3D
avatar with high-quality”. In Consumer Electronics (ICCE), 2010
Digiset of Technical Papers International Conference on, IEEE, pp. 517-
518, 2010.

[9] A. Hogue, S. Gill, M. Jenkin, “Automated avatar creation for 3D
games”. In proceedings of the 2007 conference on Future Play, pp. 174-
180, ACM, 2007.

[10] D. Knoblauch, P. M. Font, F. Kuester, “VirtualizeMe: Real-time avatar
creation for tele-immersion environments”. In Virtual Reality
Conference (VR), 2010 IEEE, pp. 279-280, IEEE, 2010.

[11] T. Sucontphunt, Z. Deng, U. Neumann, “Crafting personalized facial
avatars using ediatable portrait and photograph example”. In Virtual
Reality Conference VR 2009, IEEE, pp. 259-260, 2009.

[12] Z. Mingming, L. Shoukuai, W. Jiajun, S. Huaqing, P. Zhigeng, “The 3D
caricature facemodeling based onaesthetic formulae”. In proceedings of
the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and
its Applications in Industry, ACM, pp. 191-198, 2010.

[13] M. Zollhöfer, M Martinek, G. Greiner, M. Stamminger, J. Süßmuth,
“Automatic reconstruction of personalized avatars from 3D face scans”.
Computer Animation and Virtual Worlds, 22(2-3), pp. 195-202, 2011.

[14] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, “Active shape
models-their training and application”. Computer vision and image
understanding, 61(1), pp. 38-59, 1995.

[15] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of
simple features”. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. I-
511, IEEE, 2001.

