RAAT — The Reverie Avatar Authoring Tool

A JavaScript library for designing online 3D chdesicreator software

K. C. Apostolakis and P. Daras

Information Technologies Institute
Centre for Research and Technology Hellas
Thessaloniki, Greece
kapostol@iti.gr daras@iti.gr

Abstract—avatar embodiment within the World Wide Web has
gained a lot of popularity in recent years thanks @ the
introduction of networked virtual environments created for
socialization and entertainment purposes. As eaclof these
virtual worlds generates a unique set of user requements
concerning representation preferences based on the
environment’s context, it becomes clear that evenattempt at
creating such virtual worlds should encourage the evelopment
of the appropriate avatar authoring tools, being baed on a
thorough study of avatar desirable features. The Rerie Avatar
Authoring Tool (RAAT) introduced in this paper helps
developers address these ever-emerging avatar festu
requirements, allowing them to easily set up and d&gn online
character creation applications, tailored to the witual
environment specifications. Summarizing the desigprocess to a
simple task of documenting the application interfae within a
single script, RAAT encapsulates the demanding task of
character creation within simple function calls, wihle also
offering a web-based real-time solution for photoralistic
integration of user physical appearance onto the @racter mesh.

Keywords—3D Avatar; Avatar customization; Virtual world;
Browser software

. INTRODUCTION

Since the introduction of the World Wide Web, a thais
changed, both within the web itself, as well as hthe
everyday average user connects and interacts tsittontent.
As hardware cost and size decreases in a steadthedtallows
users to access the web through innovative web dingw
hardware devices, such as smart phones and tadaeds, web
technologies need to mature and take advantagardivare
accelerations and multimedia support, while defialy
departing from the more traditional
installation requirements. Recent developments

SITH (ORD

JEDI MASTER

Figure 1. Examples of character creator web based applicatozated with

software pae&kag the Reverie Avatar Authoring Tool. Both pages aspldyed using Google
ieb w Chrome web browser.

technologies, such as HTML5, WebGL, CSS3, Microsoft

Silverlight, and many others, have led web deve®peenrich
websites with stunning interactive 3D graphics,giag from

simple embellishments to full-blown commercial apgtions
featuring interactive virtual environments, exanspté which
include 3D browser games, virtual tours to rematal-tife

locations, and networked virtual worlds setting gtage for
social interaction between remote users. In theerlatense,
users cease to merely exist as static profilesydther embody
a customizable representation of one’s self, auairentity
otherwise known as aavatar.

Avatars, representation of which range from simpl2
graphical images to fully rendered and textured rBBdels,
have been deployed to populate networked virtual
environments for quite some time (such as the higbbular
social 3D virtual environments Second Litnd IMVU?), and
gradually, major players in the video gaming andwoek
solutions industry have come to adopt avatars aeans for
their users to personify themselves, examples diogu
Nintendo’s Mii's, Microsofts XBOX Live Avatars and
Yahoo's Avatars. Furthermore, users have showrespand

This work was supported by the European Commigssmater contract
FP7-287723 REVERIE{tp://www.reveriefp7.eu

! hitp://www.secondlife.com
2 http://www.imvu.com

overwhelmingly well to the idea of creating, owniagd caring
for their very own 3D virtual identity [1] [2], andill even
consider the actual purchase of virtual ornamestgh as
clothing, props, hairstyles, and in some casesyalipets) in
order to ensure their avatar is unique, easily tiiable and
special [3].

As networked cyberspaces inhabited by virtual daltara
steadily grow to become a frontier in social commut it
becomes apparent that certain tools will need tontzele
available for both developers and users to enceurthg
continued interest in creating and inhabiting ssicéred virtual
environments. Designing the tools for avatar cosatiowever,
requires prior thought on several factors that migfiuence
how users will interact with the virtual environnesnd its
inhabitants, as well as how they will react towarasd bond
with their own incarnation within this virtual wakl Different
needs of representation will arise within a virtaalvironment
geared towards an adult audience with a focus cial&ation,
in contrast to massively multiplayer on line gamekere
character features and visual traits are sometimentionally
exaggerated, unrealistic and blown out of propartibaking
all of the above under consideration, it's safeay that no one
current solution exists that can cover all of tlwsgible user
requirements in the process of avatar creation.h Baew
networked virtual environment will generate its oamntent-
based context, and target a different group of suseith
varying demands and expectations concerning theahppf
their virtual personalities. As a result, with eawéw virtual
social environment, a new daunting task of desmyramd
developing avatar authoring tools will emerge, addio the
overall complexity of the development plan.

In order to address this issue, and offer a saiutimat
greatly simplifies the authoring tool design pragem this
paper we introduce the Reverie Avatar Authoring IKibo
(RAAT), an open source JavaScript software libramat
allows developers to easily design online intevactiharacter
creation software, tailored to the exact needshef hosting

networked virtual worldThe library includes pre-defined user

interface controllers for loading and manipulatimylti-part
character geometry directly on the client-side, eoches with
a set of server-side tools that allow users tdifatz their own
visual appearance onto the character using Actihap&
Models [14]. As the design process is reduced somple task
of modifying a single template file script, RAATered
avatar creator software serve as a prime exampleowfthe
latest Web technologies can support the creationaof
attractive, competitive software package that driisvstrength
from simplicity, adaptiveness, portability and zewser-end
prerequisites concerning both physical memory sgacevell
as installation times.

The remainder of this paper is organized as follolus
Section 2, an overview of the RAAT library is pretsl along
with a brief summary of recent related work, whiection 3
documents the RAAT library software components #or
comprehensive overview of the library-powered safev
structure. Section 4 finally concludes this paplena with
some insight on future work.

. BACKGROUND AND RELATED WORK

In general, studies have suggested that the protesstar
creation could lead to users forming a strongesseaf self-
presence and psychological closeness to the creatadcter
[4]. Much of the related literature on avatar d@at
methodologies focuses on research on the fieldsutdfmatic
mesh deformation and modeling [7] [8] as well asrus
reconstruction [9] [10], in an attempt to creatdthfal
representations of the user’s physical appearamterdegrate
those onto the virtual character geometry. The dand such
attempts is that users are more likely to relatea twirtual
character that closely resembles their own appearamabling
a higher sense of presence. Moreover, automatibaustfor
the retrieval of the user’s shape and appearamelgienhance
usability of such systems. As the human face isafribe most
easily recognizable and expressive features of hhman
visage, many researchers have studied ways tofdratie
facial likeness of people onto the avatar's facengis
photographs [8] [11] [12] [13]. Many of the repaitteesults
have been adopted onto commercial
applications, with various degrees of customizatiptions and
tools to accomplish the desired effect.

However, studies show that not all virtual enviremts are
driven by the same needs for avatar representatieaning,
some features are more desirable than others igifispe
situations. The way the avatars look in terms ddlisen,
multitude of customization options and more impuatttg their
relation to the context (i.e. how the avatar's loakd feel
matches that of the virtual environment it's inteddto
populate) all have an impact on how well users ivecéhe
experience of being able to customize their owtuslridentity
[5]. However translating user needs in terms oftexinis a
complex, yet viable task, in order to ensure uséiigpreserve
an interest in investing both time and caring teirttvirtual
representation, and as a result the virtual enment in
general. Design choices, such as being able torpocate
realistic visual features onto the appearanceettiaracter, or
rather select features from a wide range of preemaskets
have to rely on how much effort users feel theyuthtnvest in
creating the character, as well as their intentionshare
personal information, such as their physical appeze. For
example, realistic representations of oneself arerem
preferable in environments, where virtual preseiscelosely
related to social interaction and communicationisabe case
with teleconferencing, while online game users loa other
hand have been shown to appreciate a more geress,
realistic look that leaves more room for imaginajs] [6].

RAAT is a JavaScript library that allows developdos
quickly design and set up every viable componentaof
complete avatar authoring engine. Such componemwiside
the graphical user interface (GUI) elements whietve as the
main interaction dialog between the user and thioaimg
engine, as well as 3D scenes, objects and renderriisig the
purpose of real-time visualization. As the entireatim
associated with rendering, projection and lightiradculations
is handled by the underlying JavaScript 3D Libraityee.js,
all of RAAT's functionality and generation of WebGL
primitives is encapsulated within comprehensible
representations of parameterized object classel,asi3D

! Three.js library available attp:/mrdoob.github.com/three.js/

and open-source

Client Server

Developer Specmcatlons T

st /Ie

l
x
.
=
am
-
om
Lo
]
5
u
N

Styling Sheets Template Mesh files ASM Flles

po we-r . mesh h specs

J aw«f arv
J . I

|

I

|mgproc raat

' ﬂthng

raw data params |

=1
= ‘....
pHp s model

vertex/uv buffers asm ﬁt :

Figure 2. Structure of a typical RAAT-powered character aseabftware.

viewers, texture composers, GUI windows and mudtip
character meshes. Being powered by Three.js, wieiatures
support of sophisticated rendering techniques, suach
hardware-accelerated graphics and post-processingering

effects, RAAT encourages developers to focus onemor

creative aspects, such as manipulating the GUulaywrovide
or limit functionality, where deemed necessary, altignately
modeling the 3D base mesh to be parameterized tiséngnd-
user application. As Three.js provides a wide raofyenesh
format file loaders in order to introduce exterpatireated
content into the virtual scene that serves as wasafor RAAT
to display and deform character meshes on, in ahelif
RAAT can be viewed as a powerful external add-orthi®
Three.js library, allowing developers to easily apdckly set
up fully functional impressive character creatiooftware,
tailored to the exact needs and visual style of web
application intended to use the created content.

In addition to being a powerful asset for designawatar
creation applications, RAAT benefits from the addetlie of
being completely based on current web technologganimg
that the resulting software can be directly hoste@n ordinary
website, requiring no prior download or installatiprocedure
to be performed by the users before being abladate their
characters. RAAT’s object-oriented design allowstdt be
easily integrated into virtually any HTML5 webpagehile
offering web developers the basic tools with whicbharacter
mesh can be loaded, customized and exported, anatpg
the entire graphical user interface into a singlédvil division
section (div), that can be easily placed anywheitbinvthe
page body, and styled to preference using star@&fi styling
sheets.

I1l. LIBRARY COMPONENTSAND SOFTWARE STRUCTURE

The RAAT software library consists of a number of
components, whose principal role is to encapsunaist of the
internal functionality inside a shell consisting sfmple
function calls, as has been described in the pusvi®ection.
Software powered by the RAAT library consists aftenber of
files, some of which need to be specified by theetwper
designing the end-user application. The core hbigself is
comprised of the client-side JavaScript code capthiwithin
the minified core scripts containing all of the whst classes
for the GUI elements, as well as a number of aanilimage

processing algorithm implementations for texturenipalation

at pixel level. The minified scripts are intendedbe included
within the HTML script along with a Template Javagcfile

that has been appropriately modified by the apiiina
developer, and documents the overall structure and
functionality of all GUI elements while setting ugentifiers

for styling with complementary external CSS scripts

On the server-side, RAAT can communicate via PH wi
a standalone ASM fitting application. The functibityais
provided for avatar authoring software where user
representation via photorealistic data is deterthite be a
welcome feature. If desirable, the application will
automatically process and generate mesh geomedrieature
data obtained from photographs, in a similar fashi[12]. A
graphical representation of a typical RAAT-poweondthracter
creator software architectural structure can ba se€igure 2.

A. Core Functionality

RAAT core functionality at the client-side is orggad
within two minified JavaScript files, dubbedgproc (Image
Processing) andaat. The first provides a number of auxiliary
functions to the latter, intended for texture malkation at
pixel level, most notably whenever photographi@dstused to
incorporate user appearance to the character niEsis.
process requires textures to be created and sesynidsnded,;
while a recoloring operation might be applied tswe overall
character skin tone matches the photographed slan. c

As described in the previous Section, RAAT is cosgat
of a number of methods that encapsulate the mgjofithe
library’s functions into a set of comprehensive poment
classes and function calls. The base set of thémeses
includes:

o 3D Viewer — The 3D Viewer class contains everything
related to the real-time 3D rendering environmemt f
visualization of the character. A call to the 3D
Viewer's constructor will setup the scene, lighting
camera and WebGL renderer and create controls for

navigating the environment with the mouse.

Character Canvas — Since a virtual character magy be
compilation of different meshes (for example, body,
hair, clothing, etc.), the Character Canvas class
contains information about the mesh structures that
comprise the final character, and offers a simple
interface with which to cause mesh geometry to
deform using pre-defined morph targets (such as
increasing a character's body mass to generatera mo
chubby character). Developers are responsible to
provide their own mesh files and corresponding rhorp
target data, according to the virtual environment
context.

Window — The Window class creates an HTML
division element that can be styled to preferersiegu
CSS and can contain any number of stylizable iaterf
elements for users to interact with the creatochsas
interactive buttons, draggable sliders and
uploaders.

file

setup: function (parentID, x, y, width, height) {
// create 3D viewer
this.viewer = new RAAT.Viewer3D(, width, height);

// main buttons window
var elements = [{

interfaceType: id: , html: 9
javascript: function () (settlngsl div.style.display = 8

3 A

interfaceType: id: , html: >
javascript: function () {settlngsz div.style.display = ;

1,

interfaceType: , id: > html: 5
javascript: function () {settings3.div.style.display = 8

13

this.toolkit = new RAAT.Window(this.viewer, , nhull, 84, 222,

true, elements);

// -1: new character dialog window

var elementsl = [{
interfaceType: id: , html: 9
javascript: function () {settlngsl div.style.display = ;
interfaceType: id: , html:)
javascript: function () {Template. v1ewer setupMesh(, 9);
3 A
interfaceType: , id: , html: 5
javascript: function () {Template.viewer.setupMesh(PROE
1
var settingsl = new RAAT.Window(this.toolkit.div,)

, 148, 148, false, elementsl);

// -2: Clothing dialog window
var elements2 = [{

interfaceType: , id: , html:)

javascript: function () {settings2.div.style.display = ;

3 A

interfaceType: 5 i@l , html: o
javascript: function () {Template.viewer.deallocateMesh(1);
interfaceType: , id: , html:)
javascript: function () {Template.viewer.setupMesh(o)8

1

var settings2 = new RAAT.Window(this.toolkit.div, 5 5

148, 148, false, elements2);

// -3: Hairstyle dialog window
var elements3 = [{

interfaceType: 5 dElg , html: 9

javascript: function () {settings3.div.style.display = 8

3 A

interfaceType: , id: , html:)
javascript: function () {Template.viewer.deallocateMesh(2);

1 A

interfaceType: 5 i@l , html: 9
javascript: function () {Template.viewer.setupMesh(o 28
1

var settings3 = new RAAT.Window(this.toolkit.div,) >

148, 148, false, elements3);

>

Figure 3. Code example of the RAAT Template file. This paréc example
sets up a 3D Viewer and a buttons panel, eachrbtgponsible for calling a
Window class with extended functionality. Here, flist Window offers two
buttons to select gender of the character, whigedther two are similar in
structure, offering options for Clothing and Hajtstmeshes to be added to
the Character Canvas.

The above components are strategically placed nwitne
HTML document using a template script that sumnesrithe
overall software design into a set of Window classction
calls. An example of a simple avatar creator apfiben design
via the template file is presented in Figure 3s the developer
duty to ensure the consistency of all interfacenelets defined
in the template and their respective functionalitiiis type of
structure allows developers to quickly and effadlg create,
test and make changes to the character creatawvsseft by
simply altering the code written in the template.fi

B. Server-side processing

In cases where user capturing and appearance atitegr
onto the character mesh is desirable, RAAT coreaSenpt
code contains two more abstract classes that san requests
to the host server via PHP, in order to send andimhlata

* OpenCV library available #tttp://opencv.willowgarage.com/wiki/
2 asmlibrary 6.0 available attp:/code.google.com/p/asmlibrary/

Client

Photc Texture GU Photo Texture Compcser

FLLLTT T

(a)

Figure 4. Overview of the ASM fitting and geometry/texture ngeation
process. A frontal face image is provided by therus which a best fit is
determined (a). The 2D model vertices are use@nemte a visible geometry
structure and at the same time serve as UV codgdirfar the texture-baking
mesh (b). Vertices of the model are then manipdlated a texture is baked
(c) before being applied onto the final charactesim(d).

from the ASM f|tt|ng applicatiorasm fit. This application was
written in C++ using OpenCV 2. 3.and asmlibrary 6% and
uses Viola-Jones classifier cascade [15] XML fitewl pre-
built ASM data files, trained to automatically fitesh vertex
data to detected instances of desired object withphotograph

or image. Web developers may choose to enable this
functionality, by initializing instances of the foling two
classes within the template file:

Photo Texture Graphical User Interface — This GUI
class is structurally similar to the 3D Viewer tirat it
creates a 2D rendering environment for viewingnfitt
geometry results on top of the user-specified image
The class contains functions that enable web camera
streaming and snapshot capturing, and is respensibl
for sending the raw image data, issuing the cathéo
asm fit application via PHP using the correct set of
input parameters (concerning which Haar cascade fil
and which ASM data file to use). The server-side
application responds by sending back the fittirmuits

in JavaScript format to generate mesh geometry
(vertex buffer) in real-time. This mesh is subsetjlye
sent to the Photo Texture component for generdtieg
final texture, as is described on the bullet below.

Photo Texture Composer — This class is responfible
rendering (“baking”) the end result textures withan
second, hidden 2D rendering environment, using the
mesh obtained from the Photo Texture GUI
component. Baking of the texture is achieved by
projecting the mesh’ original UV coordinates to #ig
scene as vertex data and in a vice-versa manngcpro
its vertex buffer as UV coordinates. This procedure
ensures that the original format of the textureds
altered, to keep texture files consistent and w@sabl
outside the scopes of RAAT (for example, adding in-
game texture layers to user-created characterh, asic
blood splatters in action game networked
environments).

Figure 5. Photographic Texture Composer Example

For example, a frontal face detector can be usédetatify
the presence of a user’s face when webcam videarsing is
enabled, and a best fit is determined to genefaentesh
geometry that appropriately represents the usacwlif shape,
and simultaneously retrieve UV coordinates to apfig
photorealistic texture. The pipeline of the desdiprocess can
be seen in Figure 4. In a similar way, any comlamabf Haar
cascade files and pre-trained ASM data files carudmd to
generate mesh and texture data for different bealispsuch as
the head profiles, the eyes, the ears, hands, lyoglsy, etc. An
example is presented in Figure 5, where users @aptérontal
(a) and profile (b) image of their heads to gereerat full
character head texture and recolor the body skime to
accordingly (c). The end result is then appliedootite

their application’s structure using a simple tertglscript that
contains the entire software functionality. The uttisg

character creator application can be easily uplkbaahel hosted
via HTTP servers, styled to preference using ezle®SS
files, and easily modified at will, by making chasgto the
aforementioned template script. Lifting the buraérandling

the intrinsic math behind the procedures implenentéhin

RAAT, creativity and imagination are all that deyggrs need
in order to create stunningly looking online chéeacreation
applications in no time.

With the library’'s ease of use and majority of prek
options, we expect RAAT to be welcomed as a prioiation
to the challenge of creating online avatar autlypéapplications
as an added asset of setting up a new networkedalir

character mesh (d). For a complete and comprefensiynyironment. Already, RAAT is intended to power the

overview of training Haar cascade classifiers, adl vas
generating appropriate ASM data files, readersrefierred to
the respective OpenCV and asmlibrary documentditiem

V. CONCLUSION

In this paper, the Reverie Avatar Authoring Toolibaiary
intended to help web developers design online chara
creation software was described. RAAT is a powetduol for
quickly generating 3D character authoring softwarej offers
developers the tools necessary to set up crucifilva®
components, such as real-time character rendegeaphical
user interface tools and photorealistic texture posers.
Thanks to the library’s simple structure, develspare only
eligible to create and add character mesh filesrdatg to the
virtual environment’s context, and are simply regdito set up

character creation tools for the FP7 3DLife and ER\E

projects. Future work will focus on adding featustich as
real time puppeteering of the created avatars \vitual

mirroring, as well as full 3D reconstruction of tsey utilizing

support of the Microsoft Kinect sensor.

REFERENCES
[1] D. I. Cordova, M. R. Lepper, “Intrinsic motivaticand the process of
learning: Beneficial effects of contextualizatiopersonalization and
choice”. Journal of Educational Psychology, 715;713196.
[2] S. Lim, “The effect of avatar choice and visual POGN game play

experiences”. Unpublished Disertation, Stanfordvdrsity, California,
2006.

(3]

(4]

(5]

(6]

(7]
8l

(9]

D. Chung, “Something for nothing: understandingcpasing behaviors
in social virtual environments”. CyberPsychologyB&haviour 6, 538-
554, 2005.

D. Chung, B. deBuys, C. Nam, “Influence of avataation on attitude,
empathy, presence and para-social interaction”. a&fu@omputer
Interaction, Interaction Design and Usability, 7220, 2007.

M. Boberg, P. Piippo, E. Ollila, “Designing avatark proceedings of
the 3% international conference on Digital Interactive dite in
Entertainment and Arts, pp. 232-239, ACM, 2008.

N. Ducheneaut, M. H. Wen, N. Yee, G. Wadley, “Batyd mind: a
study of avatar personalization in three virtuaklds’. In proceedings
of the 27" international conference of Human factors in cotimau
systems, pp. 1151-1160, ACM, 2009.

M. Bastioni, M Flerackers, “MakeHuman: Open souma for making
3d characters”. 2007.

J. Lee, Y. S. Choi, B. K. Koo, C. J. Hwang, “Antitive system for 3D
avatar with high-quality”. In Consumer Electroni¢®CCE), 2010
Digiset of Technical Papers International Confeecan, IEEE, pp. 517-
518, 2010.

A. Hogue, S. Gill, M. Jenkin, “Automated avatar atien for 3D
games”. In proceedings of the 2007 conference dar€wlay, pp. 174-
180, ACM, 2007.

[10]

[11]

[12]

[13]

[14]

[15]

D. Knoblauch, P. M. Font, F. Kuester, “VirtualizeMReal-time avatar
creation for tele-immersion environments”. In Vatu Reality
Conference (VR), 2010 IEEE, pp. 279-280, IEEE, 2010

T. Sucontphunt, Z. Deng, U. Neumann, “Crafting pegdized facial
avatars using ediatable portrait and photographmpiel. In Virtual

Reality Conference VR 2009, IEEE, pp. 259-260, 2009

Z. Mingming, L. Shoukuai, W. Jiajun, S. Huaging,Zhigeng, “The 3D
caricature facemodeling based onaesthetic formulagiroceedings of
the 9" ACM SIGGRAPH Conference on Virtual-Reality Contim and
its Applications in Industry, ACM, pp. 191-198, 201

M. Zollhéfer, M Martinek, G. Greiner, M. Stamminge}. SiBmuth,
“Automatic reconstruction of personalized avatacsnf 3D face scans”.
Computer Animation and Virtual Worlds, 22(2-3), 485-202, 2011.

T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Grah&hctive shape
models-their training and application”. Computesion and image
understanding, 61(1), pp. 38-59, 1995.

P. Viola, M. Jones, “Rapid object detection usingoasted cascade of
simple features”. In Proceedings of the 2001 IEE#n@uter Society
Conference on Computer Vision and Pattern Recagniwol. 1, pp. I-
511, IEEE, 2001.

