
REAL-TIME ENCODING OF LIVE RECONSTRUCTED MESH SEQUENCES

FOR 3D TELE-IMMERSION

Rufael Mekuria
+
, Dimitrios Alexiadis

*
, Petros Daras

*
 and Pablo Cesar

+

+
Centrum Wiskunde en Informatica

*
Centre for Research & Technology - Hellas

SciencePark 123 1098 XG Amsterdam 6th km Xarilaou - Thermi, 57001, Thessaloniki

{r.n.mekuria, p.s.cesar}@cwi.nl {dalexiad,daras}@iti.gr

ABSTRACT

3D tele-immersion systems based on live reconstructed

geometry, 3D-based videoconferencing, require low-delay

encoding and small bandwidth usage. Existing triangle mesh

compression methods are not that useful, as they are

generally optimized for “downloadable” 3D objects, with

high encoding delays. In this paper we experiment with a

real-time reconstruction system that outputs a sequence of

triangular meshes. Explorative analysis on the mesh data

shows that regularities happen in the connectivity and

geometric data. Based on this, we develop a module that

achieves a compact representation for each reconstructed

mesh. Comparison with the SC3DMC standard on the live

reconstructed mesh sequences reveals an encoding speedup

of over 20 times at comparable rate/distortion levels. By

exploiting the properties of the capture and reconstruction

process, we provide an optimized encoding mechanism that

enables real-time encoding. This paper discusses some

potential directions to better handle the large byte size of

live reconstructed 3D triangle mesh sequences with stringent

constraints on bandwidth, delay and computational

complexity.

Index Terms— 3D Mesh Reconstruction, Triangular

Mesh Compression, Interactive Service, 3D Tele immersion

1. INTRODUCTION

Real-Time transmission of live triangular mesh

reconstructions opens novel possibilities for 3D tele-

immersion (3DTI) as it enables to mix real and virtual

content. For example, instead of a person controlling an

avatar or a model inside a virtual world, the person can be

ported directly into the virtual world as a 3D triangular mesh

sequence that is reconstructed on the fly, including all its

geometrical details and movements. Figure 1 shows a

reconstructed human “immersed” in a virtual world. The 3D

mesh representation has advantages as it offers flexibility in

rendering (shading, rendering with stereo or multiple views),

integration with virtual worlds (collision detection,

navigation) and is commonly supported in games and by

modern graphics cards. Figure 2 illustrates a typical

pipeline, where a 3D reconstruction process R generates a

sequence of triangular meshes M
0
 , M

1
 … M

n
 (based on

image and depth data from multiple cameras). These triangle

meshes are compressed and transmitted over the IP network

to a remote site. The remote site can be a participant in a

multi-party conferencing session or a virtual world

application server that renders objects together and forwards

rendered images as videos to light weight viewer terminals.

A current challenge is that the 3D mesh representation is less

well supported by standardized compression and

transmission methods. Current triangle mesh codecs

introduce significant encoding delays that decrease the

interactivity and frame rate in an interactive scenario.

Figure 1: A virtual world with a 3D human mesh,

reconstructed in real-time from multiple depth cameras

(right), and a virtual character (left).

Figure 2 3D reconstruction generating a sequence of

triangular mesh frames

The 3D mesh sequences reconstructed on-the-fly are

generally temporally incoherent mesh sequence (TIMS) [3],

i.e. the number of vertices and connectivity vary from frame

to frame. If MF = }...0),,,({ niFEVM iiii  is a

mesh sequence, |V
i
| is not constant over i. Therefore,

compression techniques that have been developed for

animated mesh sequences, i.e. temporally coherent mesh

sequence (TCMS) [3], are not applicable. For TIMS, only

static (intra) frame triangular mesh compression is available

(compressing each frame separately). A framework that

handles such TCMS for example is the MPEG-AFX

(Animated frameworks extension) [9].

In this paper we explore the properties of TIMS data

resulting from a real-time reconstruction process R. We

exploit such properties in order to achieve a bandwidth

efficient representation. The main motivation of our work is

to reduce the computational delay for encoding, introduced

by the current state of the art triangle mesh encoders. For the

reconstruction system under investigation we deploy an

encoder/decoder based on differential coding with local

quantization. Furthermore, we take advantage of the

repetitions in the connectivity data, providing a connectivity

mechanism similar to run-length encoding. The developed

codec can handle mesh data at only slightly lower

rate/distortion than the Triangle Fan Encoder from MPEG,

but instead ensuring real-time encoding times (20 time

speedup on the test data from R). We highlight some

research directions that we are investigating in order to

handle the large size of live reconstructed geometry data.

This is useful for next-generation 3D tele-immersion / tele-

presence services that may be based on live captured mesh

geometry.

The structure of the paper is as follows. In section 2 we

present some related work. In section 3 we revisit some of

the implementation details of the state of art real-time 3D

reconstruction component (R) that generates a temporal

incoherent triangle mesh sequence (TIMS). In section 4 we

investigate some of the properties of the triangle mesh data

resulting from R and develop our compressed representation.

In section 5 we present the experimental results that

compare the developed method with regular triangle mesh

compression methods from MPEG. We highlight alternative

directions to handle live reconstructed TIMS in section 6.

Conclusions based on this work are presented in section 7.

2. RELATED WORK

Techniques for reconstruction of triangle meshes from range

(depth) images have been developed during previous

decades in [1] and [2]. A recent implementation in [7]

introduces various optimizations based on these techniques

and uses consumer grade depth camera’s to acquire the

depth images. This system makes it possible to reconstruct,

in real-time, triangle mesh geometry with equipment

affordable to the general public. An interesting next step, is

to investigate if these reconstructions are useful for

communication between humans similar as in tele-presence.

This is challenging because a medium quality reconstructed

triangle mesh from [7] contains around 50,000 vertices with

normal, color, position data, and about 100,00 triangles and

therefore consumes about 3 Megabytes per frame

(uncompressed). For TIMS at 8 fps this would consume 192

Mbit which is comparable to more than 13 MPEG-4

compressed HDTV streams (8-15 Mbit/s per stream). It is

evident, that if TIMS will be used for tele-presence, efficient

compression schemes need to be developed.

Many different compression methods for triangle meshes

exist (a survey is presented in [4]), but these methods

introduce large encoding complexity. They have been

developed with offline encoding of static objects in mind,

possibly downloaded from a server or distributed on a disc.

For example the recent mpeg standard TFAN aims at real-

time decoding instead of encoding[5]. Complexity is often

introduced in the encoding of the connectivity that can

involve many searches and/or re-orderings of the edge list to

obtain an efficient representation. Connectivity

representations such as Triangle FAN’s[5] or other

extensions of the initial triangle strip concept allow

subsequent triangles to share vertices and therefore enable

efficient transport of the vertex data from the CPU towards

the GPU. Apart from disc storage, this was one of the

original aims of triangle mesh compression.

The methods developed in the literature have generally been

tested on models available in online repositories, which

allow fair comparisons between codecs.

However, for real-time reconstructed TIMS based on fixed

reconstruction process R, this may not lead to the optimal

result, both in terms of compression rate and encoding delay.

Therefore, in this paper we investigate properties of TIMS

resulting from a reconstruction process R and develop

efficient real-time compression.

3. 3D RECONSTRUCTION PROCESS

In this section we shortly present the employed real-time

frame-by-frame 3D reconstruction method, from multiple

consumer depth cameras. The method shares similarities

with [7] and is based on the notion of Step Discontinuity

Constrained Triangulation (SDCT), i.e. terrain triangulation

on the depth 2D image plane.

3.1. Capturing setup and calibration

A calibrated capturing setup with five RGB-Depth sensors

(Kinects) was implemented. The sensors are connected on a

single host PC with high processing power, as well as a

CUDA enabled GPU. One sensor is placed horizontally at a

height of 1.30m, to capture the front upper body, while the

remaining four are placed vertically, at a height of

approximately 1.80m to capture the whole human body. The

sensors are positioned on a circle of diameter 3.60m, all

pointing to the centre of the working volume, introducing a

circular “active” region of diameter approx. 2.40m

In order to fully calibrate each single Kinect, we used the

method of [8], which simultaneously estimates the depth and

the RGB camera intrinsic parameters, the relative pose

between them, as well as a depth (disparity) distortion

model. With respect to the external calibration of the

multiple Kinects network, we use a custom-made calibration

object with three intersecting large planar surfaces, which is

moved inside the working volume and captured

simultaneously by all sensors. For each captured frames, the

planar surfaces are detected in the depth images. Then, a fast

coarse pairwise calibration is realized, based on the normal

vectors of the detected 3D planes, followed by minimization

of the mean squared distance of the reconstructed points on

the three planes with the corresponding planes in a reference

camera;. Finally, a global (all-to-all cameras and for all

frames) ICP optimization procedure is realized.

Figure 3. The idea of SDCT. Each 2 × 2 square

neighborhood of a depth map is bisected into two

triangles, unless the absolute difference of the neighbor

depth values is greater than a predefined threshold (=

2cm for the presented results).

3.2. Reconstruction process

The overall reconstruction approach can be summarized as

follows:

 Pre-processing: 1) A weak 2D bilateral filter is applied to

the depth maps to reduce Kinect measurements noise. The

spatial Gaussian kernel of the bilateral filter was selected

with 4s = pixels and the depth-difference Gaussian

kernel with 50s = mm. 2) Additionally, a binary “human

silhouette” map is generated for each depth maps, by

segmenting out the foreground object of interest (human).

Background subtraction is realized by checking the

absolute difference of the current frame from a

“background” depth image, accumulated in multiple

frames.

 Triangulation: From each depth map, we construct a

mesh via SDCT, considering the depth values only inside

the “human silhouette” map. The idea in SDCT is that

depth measurements that are adjacent in the 2D depth

image plane are assumed to be connected, unless their

Euclidean 3D distance is higher than a predefined

threshold (= 2cm for the presented results). The idea is

illustrated in Figure 3. Since the spatial sampling step in

X,Y is very small compared to this threshold, it is adequate

to consider only the depth (Z) difference of the adjacent

measurements, in order to save execution time. SDCT is

formally summarized as follows: i) For each pixel

(,)Z D u v= of the depth map, consider its adjacent pixels

at the right, right-bottom and bottom,

= (1,), = (, 1), = (1, 1)
r b rb
Z D u v Z D u v Z D u v+ + + + ,

respectively; ii) If all depth distances
r

Z Z- ,
b

Z Z-

and
r b
Z Z- are below the threshold, generate a triangle

by connecting the corresponding 3D points; iii) Similarly,

if all
r b
Z Z- ,

r rb
Z Z- and

rb b
Z Z- are below the

threshold, generate a second triangle.

Figure 4 Examples of real-time reconstructions. In the

upper row, the colored lines indicate the positions and

orientations of the cameras.

 Post geometry smoothing: A fast mesh-smoothing

operation is applied to the reconstructed mesh, which

calculates the average position of each vertex with its

connected neighbor vertices. Two iterations are used.

 Weighted color mapping: The RGB color of each vertex

v is obtained as the weighted average of the pixel colors

in all visible cameras that the vertex projects to. Visibility

is inferred by comparing the actual Z distance of a vertex

to a camera and the corresponding depth value observed

by the camera. Let
i
n denote the normal and

i
v the vertex

coordinates, with respect to the i -th camera’s coordinate

system. The inner product (angle)
i i i
w = n v%g is used for

weighting the color observation in the i -th camera, where

/
i i i

= -v v v% . Practice showed the use of such a

weighted color mapping scheme can significantly improve

the visual quality.

4. REAL-TIME COMPRESSED REPRESENTATION

4.1. Data Exploration of real-time reconstructed TIMS

We explore the data output by the component in 5 different

data settings. The first setting is with one Kinect

reconstructing a person sitting in front a Kinect sensor at

approximately 1m (130 cm max). This dataset (N=20 sample

frames/models) contains around 70,000 vertices per

reconstructed model with each vertex featuring 3D position

coordinates, normals and colors. The second dataset is taken

with persons a maximum distance of 300 cm away, with a

set of 5 Kinects. The dataset represents the case of a small

room in which a participant is reconstructed (5 Kinect low,

high) while performing some activity. The high-resolution

reconstruction data contains around 250,000 vertices per

model (N=24 reconstructed models) and the low-resolution

data approximately 28,000 points (with N=26 reconstructed

models). The last two datasets tested feature reconstructions

with one Kinect at maximum 300 cm distance (1 Kinect low,

high). The high-resolution datasets contains about 65,000

vertices (N=26 reconstructions) and the low-resolution

approximately 18,000 per mode (N=22 reconstructed

models). Figure 5 shows the number of vertices in each

Mesh M
i
 generated by the reconstruction process. It shows

that the number of vertices |V
i
 | changes and that therefore it

is verified that a temporally incoherent mesh sequence

(TIMS) is produced.

Figure 5 Number of Vertices in each reconstructed mesh

in sequence

Figure 6 shows the relationship when vertices occur in the

list V
i
and when they are indexed in F

i
. It can be observed

that no outliers occur and that the triangles indexing kth

vertex are generally clustered around the 2kth triangle in the

list. This implies that relative indexing is possible and can be

efficient.
Table 1 shows an example of some of the triangles from F

i
.

It can be seen that in column 1,2 and 3 that the difference

between the second values is constant. This occurs in many

parts of the reconstructed mesh, due to the triangulation

process on the original depth images. We can exploit this by

explicitly coding the regions where this occurs. Similar

regularities were found in each of the live reconstructed

datasets.

Figure 6 Vertex Indexing of different triangles

Table 1 Example regularity in reconstructed triangle

mesh

1632 1520 1633

1520 1521 1633

1633 1521 1634

1521 1522 1634

1634 1522 1635

1522 1523 1635

1635 1523 1636

1523 1524 1636

4.2. TIMS Encoder

To exploit the properties of R we develop a coding module,

the schematic is shown in Figure 7.

Figure 7 Encoder and Decoder schematics

The upper part of Figure 7 illustrates the schematics of the

encoder. The encoder consists of two branches, one handling

the connectivity data Connectivity(E) and one handling the

geometric data Geometry(V).

The geometry data (coordinates, colors and normals) are

processed in blocks of 300-600 points and differentially

encoded per column (i.e. color, normal and position sub-

value). We quantize the differences locally, based on the

range of values in each sub-value. Normally, 4 bits are

assigned to quantize the differences, in case the values are

constant, 0 bits are assigned.

Additionally, a separate threshold value T can be assigned

that can limit the effects of coarse quantization in case max

is large. So, basically, if the differential encoding results in

error above T the value and the current index is stored in a

separate block of data that is also added to C(V). The

decoder can then decode these exactly stored values first,

and use them to improve the differential decoding quality of

these points at the cost of some extra storage space.

The compressed representation can be quickly decoded.

Based on the starting values of the block and max that are

stored in each block, the local quantization vector can be

computed and differential decoding can be performed. The

advantage of the proposed approach is that in different

regions of the mesh different resolutions/level of detail are

obtained based on the denseness of subsequent points in the

list that are generally co-located. While other techniques can

also achieve this, the extremely low computational load is

desirable in this real-time application.

The lower part of the encoder block in Figure 7 handles the

connectivity compression of the edges between vertices.
The module differential in Figure 7 computes the difference

between indexes in subsequent triangles in the face list. If

triangle [A B C] is followed by [B C D] in the list the

difference would be computed as [A-B B-C C-D].

The module patterns in Figure 7 aims to find the regularities

in the model connectivity. As such, patterns occur many

times, they can be coded as a run (number of repetitions).

Examples of sequence of difference are for examples 0 0 1 1

00 11 and so on. Table 2 shows the data structure that can

store run. The run is stored as 5 integers: the type of pattern

(mode), difference value 1, difference value 2, the start

position (in the indexed face set list) and value which are the

amount of repetitions (faces) coded in the run.

Table 2 Data Structure pattern_run

type Field

int Mode Diff1 Diff2 Start value

In the encoder block, either the differential value is added to

the compressed representation C(E), or the coded run data-

structure is added. In the connectivity data generated by the

reconstruction process, over 90% of the data can be coded in

runs over length 32. More information and details on the

encoding algorithm can be found in [10].

5. EXPERIMENTAL RESULTS

Figures 8-11 show the comparison results, where imtp

denotes the proposed compression method, while tfan is the

high end coder defined in the MPEG Standard SC3DMC[5]

while SVA and QBCR are two low complexity codecs also

defined within MPEG SC3DMC. Figure 8 shows the

encoding (compression time), which is important if meshes

are captured in real-time in an interactive session. Figure 9

shows the decompression time achieved with the different

codecs. Figure 10 shows the compression gain achieved in

the different settings, the performance is only slightly worse

compared to the TFAN codec. Figure 11 shows the quality

distortion caused by the different codecs measured on the

dataset 1 Kinect, High 130 cm. We measured the root mean

square distance from the original to the decoded model with

the tool available in [6]. The distortion of a mesh D(M) is

given as






original
i Vv

decodedoriginali SvdistVMD 2

_)),((/1)(

where |V| is the number of vertices in the mesh and dist(v,S)

is the Euclidian distance between the original point and the

reconstructed surface.

Figure 8 compression time achieved with different

codecs

Figure 9 decompression time achieved with different

codecs

Overall, with a simple coding scheme we show encoding

speed increase of around 20x compared to the TFAN codec

and a 10x speedup in decoding at only slightly larger size.

This result holds for all the different settings/datasets that

were tested. The Machine used to obtain the results was an

intel i7 desktop Machine (3.2 GhZ), with 8 GB of RAM.

Generally, decoding and encoding times are below 20 ms

enabling real-time pipelines suitable for 3D tele-presence.

Figure 10 compression gain achieved with different

coding options

Figure 11 Distortion level obtained of the different

codecs, measured with available tool [6]

6. DISCUSSION

This article explored a possibility for compressing live

reconstructed mesh geometry sequences for use in multi-

party conferencing and tele-immersion applications by

taking advantage of specific properties of the reconstruction

process R. Using this approach a low complexity encoder

was developed. Alternative approaches include using regular

triangle mesh codecs, which introduce delay and result in

low frame rates, due to their computational complexity.

Alternatively, sending all the depth images and running full

3D reconstruction at the receiver sites, is likely to increase

the computational load on the receivers too much when the

number of participants increases. Moreover, the encoding

and transmission of the depth images will introduce

additional delays. We believe that studying the data from

live reconstruction modules, and modeling it can be used to

realize low complexity encoding of the bandwidth heavy

TIMS introduced by reconstruction process R. As 3D tele-

immersive application are demanding in networking and

computational resources, efficient low complexity encoding

is critical. For the reconstruction module under investigation

we can achieve a significant (real-time) speedup compared

to state of the art mesh encoders. In further research we want

to investigate more different reconstruction modules and

use more advanced models to encode the TIMS data.

7. CONCLUSIONS & ACKNOWLEDGEMENT

This paper demonstrated a real-time 3D mesh reconstruction

method combined with a lightweight compression method. It

shows that lower encoding/decoding delays can be achieved

compared to available MPEG-4 Mesh encoders. This is of

importance for delay critical applications such as 3D

conferencing and 3D tele-immersion using reconstructed

mesh geometry. The research leading to these results has

received funding from the European Community's Seventh

Framework Programme (FP7/2007-2013) under grant

agreement no. ICT-2011-7-287723 (REVERIE project).

REFERENCES

[1] G. Turk and M. Levoy. 1994. Zippered polygon meshes

from range images. SIGGRAPH '94. pp. 311-318

[2] B. Curless and M. Levoy. 1996. A volumetric method

for building complex models from range images.

SIGGRAPH '96., pp. 303-312.

[3] R. Arcila, C. Cagniart, F. HéTroy, E. Boyer, and F.

Dupont. 2013. Segmentation of temporal mesh

sequences into rigidly moving components. Graph.

Models 75, 1, Jan. 2013, pp. 10-22.

[4] Peng J., Kim C.S., C-C jay Kuo. Technologies for 3D

Mesh Compression: A survey. Elsevier journal of visual

comm. and image repr.(2005) pp. 688-733

[5] Mamou, K., Zaharia, T. and Prêteux, F. TFAN: A low

complexity 3D mesh compression algorithm (2009),.

Comp. Anim. Virtual Worlds, 20: 343–354.

[6] Aspert, N. Santa-Cruz D., Ebrahimi T., MESH:

Measuring Error between Surfaces using the Hausdorff

distance (2002), in Proceedings of the IEEE

International Conference on Multimedia and Expo 2002

[7] D. Alexiadis, D. Zarpalas, and P. Daras, “Real-time, full

3-D reconstruction of moving foreground objects from

multiple consumer depth cameras,” IEEE Trans on

Multimedia, vol. 15, pp. 339–358, Feb. 2013.

[8] D. Herrera, J. Kannala, and J. Heikkila, “Joint depth

and color camera calibration with distortion correction,”

IEEE Trans Pattern Anal Mach Intell., vol. 34, 2012.

[9] M. Bourges-Sevenier and E.S. Jang, “ An introduction

to the MPEG-4 animation framework extension”, IEEE

Tr. on Circ. and Sys. for Video Technology, vol. 14

[10] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D.C.A

Bulterman,. and Cesar, P. A 3D Tele-Immersion System

Based on Live Captured Mesh Geometry. Proceedings

of the 4th ACM Conference on Multimedia Systems

(MMSys 2013)

