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Abstract. In this paper, a real-time tracking-based approach to human
action recognition is proposed. The method receives as input depth map
data streams from a single kinect sensor. Initially, a skeleton-tracking
algorithm is applied. Then, a new action representation is introduced,
which is based on the calculation of spherical angles between selected
joints and the respective angular velocities. For invariance incorporation,
a pose estimation step is applied and all features are extracted according
to a continuously updated torso-centered coordinate system; this is dif-
ferent from the usual practice of using common normalization operators.
Additionally, the approach includes a motion energy-based methodology
for applying horizontal symmetry. Finally, action recognition is realized
using Hidden Markov Models (HMMs). Experimental results using the
Huawei/3DLife 3D human reconstruction and action recognition Grand
Challenge dataset demonstrate the efficiency of the proposed approach.
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1 Introduction

Action recognition constitutes a widely studied field and a very active topic in
the computer vision research community [7]. This is due to the wide set of po-
tential fields where the research outcomes can be commercially applied, such as
surveillance, security, human computer interaction, smart houses, helping the
elderly/disabled, to name a few. In order to develop a robust action recognition
system, the respective algorithm needs to efficiently handle the differences in the
appearance of the subjects, the human silhouette features, the execution of the
same actions, etc. Additionally, the system should incorporate the typical rota-
tion, translation and scale invariances. Despite the fact that multiple research
groups focus on this topic and numerous approaches have already been presented,
significant challenges towards fully addressing the problem in the general case
are still present.

Action recognition approaches can be roughly divided into the following
three categories [10], irrespectively of the data that they receive as input (i.e.



single-camera videos, multi-view video sequences, depth maps, 3D reconstruction
data, etc.): Space-Time Interest Point (STIP)- [6][5][2], spatio-temporal shape-
[13][14][3] and tracking-based [4][12][8][9]. STIP-based methods perform analysis
at the local-level; however, they typically exhibit increased computational com-
plexity for reaching satisfactory recognition performance. Spatio-temporal shape
approaches rely on the estimation of global-level representations for performing
recognition, using e.g. the outer boundary of an action; however, they are prone
to the detrimental effects caused by self-occlusions of the performing subjects.
On the other hand, the performance of tracking-based approaches, which rely on
the tracking of particular features or specific human body parts in subsequent
frames (including optical-flow-based methods) depends heavily on the efficiency
of the employed tracker. Nevertheless, the advantage of the latter category of
methods is that they can allow the real-time recognition of human actions.

In this paper, a real-time tracking-based approach to human action recog-
nition is proposed. The method receives as input a sequence of depth maps
captured from a single kinect sensor, in order to efficiently capture the human
body movements in the 3D space. Subsequently, a skeleton-tracking algorithm
is applied, which iteratively detects the position of 15 joints of the human body
in every captured depth map. Then, a new action representation is introduced,
which is based on the calculation of spherical angles between selected joints and
the respective angular velocities, for satisfactorily handling the differences in the
appearance and/or execution of the same actions among the individuals. For
incorporating further invariance to appearance, scale, rotation and translation,
a pose estimation step is applied prior to the feature extraction procedure and
all features are calculated according to a continuously updated torso-centered
coordinate system; this is different from the usual practice of using normaliza-
tion operators during the analysis process [4]. Additionally, the approach incor-
porates a motion energy-based methodology for applying horizontal symmetry
and hence efficiently handling left- and right-body part executions of the exact
same action. Finally, action recognition is realized using Hidden Markov Models
(HMMs). Experimental results using the Huawei/3DLife 3D human reconstruc-
tion and action recognition Grand Challenge dataset1 demonstrate the efficiency
of the proposed approach.

The paper is organized as follows: Section 2 outlines the employed skeleton-
tracking algorithm. The proposed action recognition approach is described in
Section 3. Experimental results are presented in Section 4 and conclusions are
drawn in Section 5.

2 Skeleton-tracking

Prior to the application of the proposed action recognition approach, the depth
maps captured by the kinect sensor are processed by a skeleton-tracking algo-
rithm. The depth maps of the utilized dataset were acquired using the OpenNI

1 http://mmv.eecs.qmul.ac.uk/mmgc2013/



API2. To this end, the OpenNI high-level skeleton-tracking module is also used
for detecting the performing subject and tracking a set of joints of his/her body.
More specifically, the OpenNI tracker detects the position of the following set
of joints in the 3D space G = {gi, i ∈ [1, I]} ≡ {Torso, Neck, Head, Left
shoulder, Left elbow, Left wrist, Right shoulder, Right elbow, Right wrist,
Left hip, Left knee, Left foot, Right hip, Right knee, Right foot}. The po-
sition of joint gi is implied by vector pi(t) = [x y z]T , where t denotes the frame
for which the joint position is located and the origin of the orthogonal XY Z
co-ordinate system is placed at the center of the kinect sensor. An indicative
example of a captured depth map and the tracked joints is given in Fig. 1.

The OpenNI skeleton-tracking module requires user calibration in order to es-
timate several body characteristics of the subject. In recent versions of OpenNI,
the ‘auto-calibration’ mode enables user calibration without requiring the sub-
ject to undergo any particular calibration pose. Since no calibration pose was
captured for the employed dataset, the OpenNI’s (v. 1.5.2.23) ‘auto-calibration’
mode is used in this work. The experimental evaluation showed that the em-
ployed skeleton-tracking algorithm is relatively robust for the utilized dataset.
In particular, the position of the joints is usually detected accurately, although
there are some cases where the tracking is not correct. Characteristic examples
of the latter are the inaccurate detection of the joint positions when very sudden
and intense movements occur (e.g. arm movements when performing actions like
‘punching’) or when self-occlusions are present (e.g. occlusion of the knees when
extensive body movements are observed during actions like ‘golf drive’).

3 Action recognition

In this section, the proposed skeleton-tracking-based action recognition approach
is detailed. The developed method satisfies the following two fundamental prin-
ciples: a) the computational complexity needs to be relatively low, so that the
real-time processing nature of the algorithm to be maintained, and b) the di-
mensionality of the estimated action representation needs also to be low, which
is a requirement for efficient HMM-based analysis [11].

3.1 Pose estimation

The first step in the proposed analysis process constitutes a pose estimation
procedure. This is performed for rendering the proposed approach invariant to
differentiations in appearance, body silhouette and action execution among dif-
ferent subjects, apart from the typically required invariances to scale, transla-
tion and rotation. The proposed methodology is different from the commonly
adopted normalization procedures (e.g. [4]), which in their effort to incorporate
invariance characteristics they are inevitably led to some kind of information
loss. In particular, the aim of this step is to estimate a continuously updated

2 http://www.openni.org/
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Fig. 1. Indicative pose estimation example: (a) examined frame and (b) captured depth
map along with the tracked joints and the estimated orthogonal pose vectors.

orthogonal basis of vectors for every frame t that represents the subject’s pose.
The calculation of the latter is based on the fundamental consideration that the
orientation of the subject’s torso is the most characteristic quantity of the sub-
ject during the execution of any action and for that reason it could be used as
reference. For pose estimation, the position of the following three joints is taken
into account: Left shoulder, Right shoulder and Right hip. These comprise
joints around the torso area, whose relative position remains almost unchanged
during the execution of any action. The motivation behind the consideration of
the three aforementioned joints, instead of directly estimating the position of
the torso joint and the respective normal vector, is to reach a more accurate
estimation of the subject’s pose. It must be noted that the Right hip joint was
preferred instead of the obvious Torso joint selection. This was performed so
that the orthogonal basis of vectors to be estimated from joints with bigger in



between distances that will be more likely to lead to more accurate pose esti-
mation. However, no significant deviation in action recognition performance was
observed when the Torso joint was used instead. In this work, the subject’s pose
comprises the following three orthogonal vectors {n1,n2,n3} that are calculated
as follows:

n1 =
p7 − p4

∥p7 − p4∥
, u =

p7 − p13

∥p7 − p13∥

n3 =
n1 × u

∥n1 × u∥
, n2 = n3 × n1 (1)

where subscript t is omitted in the above expressions for clarity, ∥.∥ denotes the
norm of a vector and × denotes the cross product of two vectors. An indicative
example of the proposed pose estimation procedure is illustrated in Fig. 1.

3.2 Action representation

For realizing efficient action recognition, an appropriate representation is re-
quired that will satisfactorily handle the differences in appearance, human body
type and execution of actions among the individuals. For that purpose, the an-
gles of the joints’ relative position are used in this work, which showed to be
more discriminative than using e.g. directly the joints’ normalized coordinates.
In order to compute a compact description, the aforementioned angles are es-
timated in the spherical coordinate system and the radial distance is omitted,
since it contains information that is not necessary for the recognition process.
Additionally, building on the fundamental idea of the previous section, all angles
are computed using the Torso joint as reference, i.e. the origin of the spherical
coordinate system is placed at the Torso joint position. For computing the pro-
posed action representation, only a subset of the supported joints is used. This
is due to the fact that the trajectory of some joints mainly contains redundant
or noisy information. To this end, only the joints that correspond to the upper
and lower body limbs were considered after experimental evaluation, namely the
joints Left shoulder, Left elbow, Left wrist, Right shoulder, Right elbow,
Right wrist, Left knee, Left foot, Right knee and Right foot. Incorporating
information from the remaining joints led to inferior performance, partly also
due to the higher dimensionality of the calculated feature vector that hindered
efficient HMM-based analysis. For every selected joint gi the following spherical
angles are estimated:

φi = arccos(
⟨(pi − p0),n2⟩
∥pi − p0∥ · ∥n2∥

) ∈ [0, π]

θi = arctan(
⟨(pi − p0),n1⟩
⟨(pi − p0),n3⟩

) ∈ [−π, π] (2)

where subscript t is omitted for clarity, φi is the computed polar angle, θi is the
calculated azimuth angle and ⟨·, ·⟩ denotes the dot product of two vectors.



Complementarily to the spherical angles, it was experimentally shown that
the respective angular velocities provide additional discriminative information.
To this end, the polar and azimuth velocities are estimated for each of the
selected joints gi, using the same expressions described in (2). The difference is
that instead of the position vector pi the corresponding velocity vector vi is used.
The latter is approximated by the displacement vector between two successive
frames, i.e. vi(t) = pi(t)− pi(t− 1).

The estimated spherical angles and angular velocities for frame t constitute
the frame’s observation vector. Collecting the computed observation vectors for
all frames of a given action segment forms the respective action observation
sequence h that will be used for performing HMM-based recognition, as will be
described in the sequel.

3.3 Horizontal symmetry

A problem inherently present in action recognition tasks concerns the execution
of the same action while undergoing either a right- or left-body part motion. In
order to address this issue, a motion energy-based approach is followed in this
work, which builds upon the idea of the already introduced subject’s pose (Sec-
tion 3.1). The proposed method goes beyond typical solutions (e.g. measuring
the length or the variance of the trajectories of the left/right body joints) and
is capable of identifying and applying symmetries not only concerning common
upper limb movements (e.g. left/right-hand waving actions), but also more ex-
tensive whole-body actions (e.g. right/left-handed golf-drive). In particular, all
joints defined in G are considered, except from the Torso, Head and Neck
ones. For each of these joints, its motion energy, which is approximated by
∥vi(t)∥ = ∥pi(t) − pi(t − 1)∥, is estimated for every frame t. Then, the cal-
culated motion energy value ∥vi(t)∥ is assigned to the Left/Right Body Part
(LBP/RBP ) according to the following criterion:

if ⟨(pi(t)− p0(t)),n1(t)⟩ =
{
> 0, ∥vi(t)∥ → RBP
< 0, ∥vi(t)∥ → LBP

(3)

where → denotes the assignment of energy value ∥vi(t)∥ to LBP/RBP . By
considering the overall motion energy that is assigned to LBP/RBP for the
whole duration of the examined action, the most ‘active’ body part is estimated.
Then, a simple reallocation of the extracted feature values and application of
horizontal symmetry attributes is performed. This is realized as follows: If the
most ‘active’ part is LBP , the representation described in Section 3.2 remains
unchanged. In case that RBP is the most ‘active’ one, the feature values of hori-
zontally symmetric joints (e.g. Left shoulder-Right shoulder) are exchanged in
all observation vectors of the respective action observation sequence h, while the
horizontal symmetry attribute is applied by inverting the sign of all estimated
azimuth angles and azimuth angular velocities. In this way, efficient horizon-
tal symmetry that covers both limb motions as well as more extensive body
movements is imposed.



3.4 HMM-based recognition

HMMs are employed in this work for performing action recognition, due to their
suitability for modeling pattern recognition problems that exhibit an inherent
temporality [11]. In particular, a set of J HMMs is employed, where an individual
HMM is introduced for every supported action aj . Each HMM receives as input
the action observation sequence h (described in Section 3.2) and at the evaluation
stage returns a posterior probability P (aj |h), which represents the observation
sequence’s fitness to the particular model.

Regarding the HMM implementation details, fully connected first order
HMMs, i.e. HMMs allowing all possible hidden state transitions, were utilized
for performing the mapping of the low-level features to the high-level actions.
For every hidden state the observations were modeled as a mixture of Gaussians
(a single Gaussian was used for every state). The employed Gaussian mixture
models (GMMs) were set to have full covariance matrices for exploiting all pos-
sible correlations between the elements of each observation. Additionally, the
Baum−Welch (or Forward−Backward) algorithm was used for training, while
the Viterbi algorithm was utilized during the evaluation. Furthermore, the num-
ber of hidden states of the HMMs was considered a free variable. The developed
HMMs were implemented using the software libraries of [1].

4 Experimental results

In this section, experimental results from the application of the proposed ap-
proach to the Huawei/3DLife 3D human reconstruction and action recognition
Grand Challenge dataset are presented. In particular, the second session of
the first dataset is used, which provides RGB-plus-depth video streams from
two kinect sensors. In this work, the data stream from the frontal kinect was
used. The dataset includes captures of 14 human subjects, where each action
is performed at least 5 times by every individual. Out of the available 22 sup-
ported actions, the following set of 17 dynamic ones were considered for the
experimental evaluation of the proposed approach: A = {aj , j ∈ [1, J ]} ≡
{Hand waving, Knocking the door, Clapping, Throwing, Punching, Push
away, Jumping jacks, Lunges, Squats, Punching and kicking, Weight lift−
ing, Golf drive, Golf chip, Golf putt, Tennis forehand, Tennis backhand,
Walking on the treadmill}. The 5 discarded actions (namely Arms folded, T −
Pose, Hands on the hips, T −Pose with bent arms and Forward arms raise)
correspond to static ones that can be easily detected using a simple action repre-
sentation; hence, they were not included in the conducted experiments that aim
at evaluating the performance of the proposed approach for detecting complex
and time-varying human actions. Performance evaluation was realized following
the ‘leave-one-out’ methodology, where in every iteration one subject was used
for performance measurement and the remaining ones were used for training;
eventually, an average performance measure was computed taking into account
all intermediate recognition results.
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Fig. 2. Obtained action recognition results: (a) Estimated action confusion matrix and
(b) calculated action recognition rates. Supported actions: a1: Hand waving, a2: Knock-
ing the door, a3: Clapping, a4: Throwing, a5: Punching, a6: Push away, a7: Jumping
jacks, a8: Lunges, a9: Squats, a10: Punching and kicking, a11: Weight lifting, a12: Golf
drive, a13: Golf chip, a14: Golf putt, a15: Tennis forehand, a16: Tennis backhand, a17:
Walking on the treadmill.

In Fig. 2, quantitative action recognition results are presented in the form of
the estimated confusion matrix (Fig. 2 (a)) and the calculated recognition rates
(Fig. 2 (b)), i.e. the percentage of the action instances that were correctly identi-
fied. Additionally, the value of the overall classification accuracy, i.e. the percent-
age of all action instances that were correctly classified, is also given. For perfor-
mance evaluation, it has been considered that argmaxj(P (aj |h)) indicates the
action aj that is assigned to observation sequence h. From the presented results,
it can be seen that the proposed approach achieves satisfactory action recognition
performance (overall accuracy equal to 76.03%), which demonstrates the capa-
bility of the developed method to combine real-time processing with increased
recognition rates. Examining the results in details, it can be seen that there are
actions that exhibit high recognition rates (e.g. Jumping jacks, Punching and



Table 1. Time efficiency evaluation (per frame average processing times in msec)

Kinect sensor Steps of the proposed approach

Capturing Skeleton Feature HMM-based
period tracking extraction recognition

46.821 45.350 0.010 0.106

kicking andWalking on the treadmill), since they present characteristic motion
patterns among all subjects. However, there are also actions for which the recog-
nition performance is not that increased (e.g. Punching, Knocking the door
and Golf drive). This is mainly due to these actions presenting very similar mo-
tion patterns over a period of time during their execution with other ones (i.e.
Punching and kicking, Hand waving and Golf chip, respectively). Moreover,
the careful examination of the obtained results revealed that further performance
improvement was mainly hindered due to the following two factors: a) the em-
ployed tracker sometimes provided inaccurate joint localizations (especially in
cases of rapid movements or self-occlusions) and b) significant ambiguities in the
execution of particular action pairs (e.g. some Golf drive instances presented
significant similarities with corresponding Golf chip ones that even a human
observer would be difficult to discriminate between them).

The proposed approach is also quantitatively compared with the following
variants: a) use of normalized Euclidean distance of every selected joint from
the Torso one (Comp1), b) use of normalized spherical angles of each joint from
the Torso one (Comp2), and c) variant of the proposed approach, where the
estimated spherical angles and angular velocities are linearly normalized with
respect to the maximum/minimum values that they exhibit during the execution
of a particular action (Comp3). Variants (a) and (b) follow the normalization
approach described in [4], i.e. the human joint vector is position and orientation
normalized without considering the relative position of the joints. From the pre-
sented results, it can be seen that the proposed method significantly outperforms
both (a) and (b) variants. The latter demonstrates the usefulness of estimating
the pose of the subject during the computation of the action representation,
compared to performing a normalization step that does not take explicitly into
account the relative position of the detected joints. The proposed method also
outperforms variant (c), which suggests that performing a normalization of the
angles/velocities within the duration of a particular action leads to decrease in
performance.

The time efficiency of the proposed approach is evaluated in Table 1. In
particular, the per frame average processing time, i.e. the time required for pro-
cessing the data that correspond to a single frame, are given for every algorithmic
step of the proposed method. More specifically, the following steps were consid-
ered: a) skeleton-tracking, described in Section 2, b) feature extraction, which
includes the pose estimation, action representation computation and horizontal
symmetry application procedures that are detailed in Sections 3.1, 3.2 and 3.3,
respectively, and c) HMM-based recognition, outlined in Section 3.4. The dura-



tion of the aforementioned procedures is compared with the capturing period of
the employed kinect sensor, i.e. the time interval between two subsequently cap-
tured depth maps. The average processing times given in Table 1 are obtained
using a PC with Intel i7 processor at 2.67 GHz and a total of 6 GB RAM, while
for their computation all video sequences of the employed dataset were taken into
account. From the presented results, it can be seen that the employed skeleton-
tracking algorithm constitutes the most time-consuming part of the proposed
approach, corresponding to approximately 99.74% of the overall processing. The
latter highlights the increased time efficiency (0.26% of the overall processing)
of the proposed action recognition methodology (Section 3), characteristic that
received particular attention during the design of the proposed method. Addi-
tionally, it can be seen that the overall duration of all algorithmic steps is shorter
that the respective kinect’s capturing period; in other words, all proposed algo-
rithmic steps are completed for the currently examined depth map before the
next one is captured by the kinect sensor. This observation verifies the real-time
nature of the proposed approach. It must be highlighted that the aforemen-
tioned time performances were measured without applying any particular code
or algorithmic optimizations to the proposed method.

5 Conclusions

In this paper, a real-time tracking-based approach to human action recognition
was presented and evaluated using the Huawei/3DLife 3D human reconstruction
and action recognition Grand Challenge dataset. Future work includes the in-
vestigation of STIP-based approaches for overcoming the inherent limitations of
skeleton-tracking algorithms and the incorporation of multimodal information
from additional sensors.
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