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ABSTRACT

The future of tele-conferencing is towards multi-party 3D Tele-

Immersion (TI) and TI environments that can support realistic

inter-personal communications and virtual interaction among

participants. In this paper, we address two important issues,

pertinent to TI environments. The paper focuses on tech-

niques for the real-time, 3D reconstruction of moving humans

from multiple Kinect devices. The off-line generation of real-

life 3D scenes from visual data, captured by non-professional

users is also addressed. Experimental results are provided that

demonstrate the efficiency of the methods, along with an ex-

ample of mixing real with virtual in a shared space.

1. INTRODUCTION

With current tele-conferencing systems, although participants

can talk to each other as if they were in the same location,

they remain captives in a 2-D screen projection. The future

of tele-conferencing systems towards realistic inter-personal

communications is multi-party 3D Tele-Immersive (TI) en-

vironments [1]. Three-dimensional TI environments, based

on the idea of generating realistic 3D representations of users

in real-time and placing them inside a shared virtual space

or even inside real 3D reconstructed scenes (Fig. 1), have

a great potential to promote collaborative work among geo-

graphically distributed users.

In this paper, some important issues, pertinent to TI en-

vironments, are addressed. The paper focuses on techniques

for the real-time, realistic 3D reconstruction of moving hu-

mans (section 2), as well as the off-line generation of real-

life 3D scenes from visual data, captured by non-professional

users (section 3). Robust, fast and accurate generation of full

3D data from real-life scenes, is still a challenging task, espe-

cially considering the high frame-rate demands of TI systems.

Although many accurate 3D reconstruction methods exist in

the literature (e.g. [2]), these are not applicable in TI appli-

cations, due to very high required computational time. Only

a few, mainly visual hull-based methods (e.g. [3]), are quite

fast (near real-time), but lack the ability to reconstruct con-

cavities. On the other hand, most of the methods exploited
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Fig. 1. Distant users, sharing a virtual world.

in real-time TI applications focus mainly on synthesizing in-

termediate views for user-given viewpoints, rather than pro-

ducing complete 3D models. In this work, real-time full 3D

reconstruction is achieved by the fusion of depth-maps, cap-

tured by multiple Kinect devices. Since the release time of

Kinect (Nov.2010) only a few relevant published works can

be found (e.g. [4]), non of them focusing on the real-time

reconstruction from multiple Kinects.

The paper is organized as follows. In section 2, methods

for real-time 3D reconstruction of moving humans are shortly

presented. In section 3 the off-line reconstruction of real-life

3D scenes from non-professional user data is addressed. Ad-

ditional issues are discussed in section 4, before concluding.

2. REAL-TIME, FULL 3D RECONSTRUCTION

The final objective here is the real-time construction of a sin-

gle, full 3D textured mesh from the depth data, captured si-

multaneously by multiple Kinect devices.

The used capturing system is composed of M = 4 Kinect

sensors, connected on a single host PC that features an Intel i7

processor and 4GB RAM, along with a CUDA-enabled GPU

NVidia GTX 560 Ti. All computation times, presented in the

paper correspond to these characteristics. The Kinect devices

are horizontally positioned at the vertices of an imaginable

square, with a diagonal of length approximately 3 meters, all

pointing to the center of the working volume. An external cal-

ibration procedure was employed to estimate the orientation

and position of each Kinect device with respect to a reference

one. The employed approach uses a hand-made calibration



bar, composed of two LEDs at a fixed distance, and consti-

tutes a combination of the methods in [5] and [6]. Due to

space limitations, the reader is referred to [5, 6]. The achieved

mean re-projection error is less than 0.8 pixels. Additionally,

one may optionally use an on-line registration approach, in

order to refine the alignment data, every few frames. In this

case, a global all-to-all registration approach is required, that

simultaneously registers multiple point-clouds. In this work,

we exploited the global registration approach of [7], which

embeds the generalized procrustes analysis into an Iterative-

Closest-Point (ICP) framework.

2.1. Real-time explicit fusion of multiple Kinect data

The overall approach, an adapted version of the mesh-zippering

algorithm of [8], is described in Fig. 2. The approach can be

summarized as follows. (a) Initially, M = 4 separate meshes

Am,m = 1 . . .M are generated via soft-thresholding of the

depth maps (to keep only the foreground object) and Step Dis-

continuity Constraint Triangulation (Fig. 3(a)); each mesh

corresponds to a single Kinect device. The generated separate

meshes present redundancy and overlap to each other. There-

fore, (b) the method continues with the decimation/removal of

the redundant, overlapping mesh regions, working in pairs of

adjacent meshes. Finally, (c) a “clipping” step, which is based

on the detection of the adjacent mesh regions and local con-

strained Delaunay triangulation, “stitches” together the mul-

tiple meshes and produces the final single mesh. Reconstruc-

tion results are given in Fig. 3(b).

The second step (b) of the method, iteratively decimates

redundant triangles from the boundaries of two meshes, until

no overlapping triangles are present. Due to its iterative na-

ture, this algorithmic part constitutes the bottleneck part of the

whole reconstruction approach and the achieved reconstruc-

tion time is of the order of a few seconds. To obtain faster

reconstruction rates, two important things have to be taken

into account: In each iteration, in order to decide whether a

triangle is redundant or not, its distance to the closest triangle

on the other mesh has to be found, which normally requires

a full search among all triangles of the other mesh. However,

given that each 3D triangle is associated with a 2D triangle

on the depth image plane, the search can be performed on the

image plane and limited in a local 2D region. Additionally,

a coarse-to-fine strategy can further speed-up the the under-

lying algorithmic step, based on the fact that each triangle

in a specific scale is associated with four triangles in the next

finer scale. With these two modifications of the algorithm, the

reconstruction time can be reduced below 1sec. Finally, in or-

der to speed up the algorithm’s execution and realize higher

frame rates, some of its parts were implemented exploiting the

CUDA (Compute Unified Device Architecture) parallel com-

puting architecture. Independent pixel-wise calculations can

be mapped into many parallel blocks of independent process-

ing threads, run on the GPU. With such a GPU implementa-

tion, the algorithm runs at frame rates close to 8fps.

Fig. 2. Explicit fusion of multiple depth-maps.

(a) (b)

Fig. 3. (a) The idea of Step Discontinuity Constraint Triangu-

lation: For each 2 × 2 neighborhood on the depth-map, two

triangles are generated, unless the absolute difference of the

neighbor depth values is greater than a predefined threshold.

(b) Explicit fusion method: Results from various viewpoints.

2.2. Real-time implicit fusion of multiple Kinect data

Following a different approach, the data from multiple Kinect

sensors can be fused in an implicit way, based on the no-

tion of volumetric Truncated Signed Distance (TSD) Func-

tion [9]. The approach is schematically described in Fig. 4

and can be summarized as follows. (a) For each frame, af-

ter soft-thresholding of the depth maps, the 3D bounding box

BB of the foreground object is estimated and the discrete

volumetric space X = (X,Y, Z) ∈ BB is considered. (b)

Each voxel X is projected on each depth-map m = 1 . . .M
and using the maps’ values the correpsonding “actual” 3D

points Xa

m
= (Xa

m
, Y a

m
, Za

m
) are found. (c) The SD functions

are calculated: SDm(X) = sgn(Za

m
− Z) · d(X,Xa

m
) where

d(X,Xa

m
) is the Euclidean 3D distance between X and Xa

m
.

The SD functions are truncated, according to: SDm(X) =
NaN, if |SDm(X)| > µ, where NaN stands for “not defined

value” and µ is a threshold, selected equal to 2.5cm in our

experiments, based on the expected accuracy of the Kinect

depth measurements and the external calibration accuracy. (d)

A combined volumetric SD function is calculated from the

weighted combination of the separate functions: GSD(X) =∑
m

wm(X)·SDm(X)
∑

m
wm(X) . The calculation of the appropriate weights

is discussed in the next paragraph. (e) The extraction of the

isosurface GSD(X) = 0, using Marching Cubes [10], pro-

duces the final complete 3D mesh.

The weight wm(X) should depend on the angle θm(X)
between the line connecting X with the m-th camera and the

surface normal vector at point X. Therefore, a surface nor-

mal map is calculated from each depth map, during an ini-



Fig. 4. Implicit fusion of multiple depth-maps.

tial stage of the algorithm. Additionally, experiments showed

that the Kinect depth measurements near the boundaries of

the captured foreground object are quite noisy. Therefore, for

each depth map an associated distance-to-background map

(notated as BD map in Fig. 4) is calculated: bm(x, y) =
max{d(x, y)/d0, 1}, where d(x, y) is the distance of pixel

(x, y) to the background pixels and d0 = 20pixels a prede-

fined parameter. The total weight is calculated as follows:

wm(X) = cos(θm(X)) · bm(Πm(X)), where Πm(X) stands

for the projection of X on the m-th depth-map plane.

Some reconstruction results are given in Fig. 5, with the

discretized 3D space consisting of 27 × 28 × 27 voxels. This

results into voxels of size 0.53cm3, considering a reasonable

size of the object’s (human’s) bounding box, such as 26×27×
26cm3. The described volumetric algorithm is suitable for a

CUDA-based parallel computing implementation, since most

of its stages involve pixel-wise or voxel-wise calculations.

With such a GPU implementation, the algorithm runs at frame

rates close to 10fps. Compared to the zippering approach of

subsection 2.1, the volumetric approach has the advantage of

performing implicitly the fusion, resulting in a higher robust-

ness (especially in areas of high surface curvature) and small

gaps’ filling near the boundaries. On the other hand, consid-

ering a fixed number of voxels (almost fixed computational

time), the voxel size increases for large volumes (bounding

boxes), resulting into quality degradation.

3. OFFLINE RECONSTRUCTION OF REAL SCENES

A prerequisite step for the dense 3D reconstruction of a scene

from unstructured user generated data is to recover the struc-

ture of the scene. Bundler framework [11] provides an ideal

solution for this purpose. This structure-from-motion approach

is capable of computing accurately the 3D poses of the cam-

eras that captured a scene, as well as their intrinsic and ex-

trinsic parameters. Figure 6(a) depicts the recovered cameras

poses and the sparse geometry of a scene captured in a dataset

of 14 images.

In order to handle the input visual dataset, the images

Fig. 5. Implicit fusion: Results for two frames.

are organized into stereo pairs, where pairs are comprised

by images whose cameras positions have the minimum base-

line distance. The availability of cameras information offers

a wide range of choices that could undertake the 3D recon-

struction task. Two approaches are considered in this paper, in

order to generate high-resolution depth-maps for each stereo

pair. The first one exploits the methodology described in [12].

This work revisits the geometry of sweeping and a spherical

parametrization of the sweeping surface is proposed and eval-

uated against plane sweeping. Experimental results proved

that spherical sweeping attained more accurate reconstruc-

tions, while preserving the time efficiency of plane sweeping.

This approach is able to generate fast 3D point clouds of the

scene per stereo pair. By back-projecting the generated 3D

point cloud on one of the stereo-pair images, a depth map is

obtained.

The second approach uses dense feature matching to com-

pute the disparity between image pairs, searching for similar-

ities across epipolar lines. Daisy descriptor [13] is selected

for dense feature matching, since its performance is better in

terms of accuracy against other prevalent descriptors. This

approach is used to compute the disparity map per stereo pair,

which is then translated into the corresponding depth-map.

The depth maps, generated by one of the above described

methods, are combined into a single 3D mesh using the volu-

metric - implicit fusion method of section 2.2. The visual re-

sults indicated that, though the first approach is fast, it is not

very accurate and needs to be followed by an approach that

uses multiview visibility reasoning to refine the reconstruc-

tion result. On the other hand, the second method sacrifices

time efficiency for reconstruction accuracy. Reconstruction

results obtained from this method are given in Fig. 6(b), as

well as in Fig. 1.

4. REAL WITH VIRTUAL - ADDITIONAL ISSUES

3D representations of distant users, captured and generated

at each user’s site can be (mesh-) coded and transmitted to a

central server site, where the users’ representations are placed

inside a shared virtual world. The architecture is scalable, in

the sense that the accuracy of the users’ representations, gen-

erated and transmitted, depends on the user’s available cap-

turing setup, as well as the network capacity. Studying appro-

priate coding techniques and network architectures is beyond

the scope of this paper. The shared world is enriched with



Fig. 6. (a) Camera positions as obtained by the bundler frame-

work [11]. (b) Reconstructed dense mesh from 4 stereo pairs.

Fig. 7. Animated dancing avatar and a reconstructed human.

detailed 3D reconstructions of real large-scale static scenes,

generated by the methods of section 3. Finally, autonomous

or controlled virtual characters (avatars) can participate in the

action within the shared space. An example is given at Fig. 1.

A low-poly, three-dimensional human character (avatar)

was hand-modeled. The static mesh was complemented by a

skeletal rig, consisting of 18 control structures (bones), con-

nected to one another using rotational joints, ultimately form-

ing a hierarchy. Animation is applied to the model by rotat-

ing specific joints, before a smooth skinning procedure calcu-

lates the bones’ weighted influences on the mesh vertices and

modifies each vertex accordingly. The textured model was

exported to the COLLADA Digital Asset and FX Exchange

Schema (DAE) format and animated in our OpenGL environ-

ment, using the joints’ orientations of a human dancer [14],

captured using the OpenNI skeleton-tracking API (Fig. 7).

This could be useful in an online dance class scenario.

5. CONCLUSIONS

Two challenging tasks, necessary in TI applications, were ad-

dressed. More specifically, methodologies for the real-time

reconstruction of moving humans, as well as the generation of

realistic 3D models of real-life scenes, were presented. The

experimental results demonstrated the appropriateness of the

described methods. An example of mixing real with virtual

in a shared virtual space was given. Future work includes the

investigation and elaboration of efficient (mesh-) coding tech-

niques that would increase the efficiency in data transmission,

as well as studying appropriate methods for user activity anal-

ysis and interaction mechanisms in various scenarios.
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