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ABSTRACT
In this paper the scanline optimization used for stereo match-
ing, is revisited. In order to improve the performance of this
semi-global technique, a new criterion to check depth discon-
tinuity, is introduced. This criterion is defined according to
the mean-shift-based image segmentation result. Addition-
ally, this work proposes the employment of a pixel dissimilar-
ity metric for the computation of the cost term, which is then
provided to the guided image filter approach to estimate the
initial cost volume. The algorithm is tested on the four images
of the online Middlebury stereo evaluation benchmark. More-
over, it is tested on 27 additional Middlebury stereo pairs for
assessing thoroughly its performance. The extended compar-
ison verifies the efficiency of this work.

Index Terms— Stereo matching, Disparity map, Guided
Image Filter, Scanline Optimization

1 Introduction
Stereo reconstruction is one of the most active research

fields in computer vision [1]. Though mature, the task of es-
timating dense disparity maps from stereo image pairs is still
challenging, while there is still space for improving accuracy,
accelerating processing time and providing new ways of han-
dling uniform areas, depth discontinuities and occlusions.

The work in [1] presents a complete taxonomy of ap-
proaches used for stereo disparity estimation. The categoriza-
tion of the approaches is based on the following four generic
steps, into which most of the stereo algorithms can be de-
composed: 1. matching cost computation; 2. cost (support)
aggregation; 3. disparity computation/optimization; and 4.
disparity refinement.

Several metrics have been proposed in the literature for
the computation of matching costs between pixels. Preva-
lent pixel-based cost measures include the absolute difference
of image intensity values [2, 3, 4], gradient-based measures
[2, 4] and non-parametric transforms such as CENSUS [3, 5]
which are robust to radiometric distortions and noise. Many
approaches use the combination of various cost measures in
order to boost accuracy. The works in [3, 5], for example, ex-
ploit a combination of absolute intensity differences, as well
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as the hamming distance of CENSUS transform coefficients.
The matching cost values over all pixels and for all candidate
disparities form the initial cost volume. In order to reduce
matching ambiguity, the pixel-based matching costs are ag-
gregated spatially over support regions in the initial cost vol-
ume. Performance evaluations on previous cost aggregation
approaches are presented in [6] and [7]. More recently, cost
aggregation approaches include guided image filter [2] and
Successive weighted summation [5].

In general there are two types of approaches, global and
local ones, regarding the disparity optimization. Local meth-
ods [2, 5] put emphasis on matching cost computation and
cost aggregation. The final disparity map is computed by ap-
plying a simple local winner-take-all (WTA) approach inde-
pendently for each pixel. Global optimization methods aim at
assigning a disparity label to each pixel so that a cost function
is minimized over the whole image area. Efficient techniques
include Graph Cuts [8] and Belief Propagation [9]. In an ad-
ditional category of approaches, the energy function is min-
imized on a subset of points of the stereo pair (semi-global
methods), for instance along 1D paths. Such approaches,
which decrease the computational complexity compared to
global optimization algorithms, involve Dynamic Program-
ming [10] or Scanline Optimization [11] techniques.

The disparity results have to be refined, since they are
polluted with outliers in occluded areas, depth discontinuities
and uniform areas that lack texture. Several stereo algorithms,
such as [11], use segmented regions for reliable outlier han-
dling. The work in [3] uses iterative region voting and proper
interpolation to fill outliers.

This paper introduces a new criterion for the definition of
the smoothness penalty terms that are used in the semi-global
scanline optimization method of [11]. The definition of this
criterion is based on the result of the mean-shift based im-
age segmentation. Additionally, the estimation of the initial
cost volume via the guided image filter is improved by the
employment of the dissimilarity measure proposed in [12].

The rest of this paper is organized as follows. Section 2
presents the method used for the estimation of the initial cost
volume. In section 3, information regarding improvements of
the scanline optimization step, is provided. Section 4 gives in-
formation on the used parameters, as well as the experimental
results, while conclusions are drawn in Section 5.



2 Initial Cost Volume Computation
2.1 Matching Cost Computation

This paper exploits the approach of [4], which is inspired
by the previous work of [2], in order to generate the initial cost
volume. However, this paper proposes a modification regard-
ing one of the cost terms used to estimate the final cost, lead-
ing to improved disparity results. This approach uses three
different cost terms to compute the matching cost function
Call(p, d) for a pixel p at each allowed disparity d.

The first term is based on the Gabor-Feature-Image. Let
us suppose that Il and Ir stand for the left and right images
in grayscale. Their corresponding Gabor-Features-Images are
GH(Il(p)) and GH(Ir(p)), respectively (the parameters used
for the extraction of the Gabor-Feature-Image are the same as
in [4]). The cost term Cgab(p, d) for pixel p at disparity d is
given by:

Cgab(p, d) = |GH(Il(p))−GH(Ir(p− d))|, (1)

Gradient information is also employed for the computation of
a gradient based cost term. In the same sense as in (1), the
gradient-based cost term is given by:

Cgra(p, d) = |∇H(Il(p))−∇H(Ir(p− d))|, (2)

where ∇H(I(p)) denotes the gradient in horizontal direction
at pixel p on image I . In [4], the third data term corresponds
to the mean of the sum of absolute differences on pixel RGB
values between the left and right images. However, in this
work, the replacement of the third term is proposed with the
dissimilarity metric on RGB values presented in [12]. There-
fore the third term is given by:

Crgb(p, d) =
∑

c=R,G,B

Dc(p, p− d)

3
, (3)

whereD(p, p−d) = min(D̄(p, p−d, Il, Ir), D̄(p−d, p, Ir, Il).
Finally, the combined matching cost function is expressed

as:

Call(p, d) = α1 ·min (Cgab(p, d), Tgab) +
α2 ·min (Cgra(p, d), Tgra) +

(1− α1 − α2) ·min (Crgb(p, d), Trgb)
(4)

where α1, α2 are the weight parameters and Tgab, Tgra, Trgb
are truncation thresholds used to reject the outliers.

2.2 Cost Aggregation
In order to reduce matching ambiguity, the pixel-based

matching costs Call(p, d) are filtered using the guided image
filter [13]. I is employed as color the guidance image and
Call(p, d) as the guided image. The filtered cost value of pixel
p at disparity d is given by:

C
′

all(p, d) =
∑
q
Wp,q(I)Call(q, d) (5)

The filter weights Wp,q are expressed as:

Wp,q = 1
|ω|2

∑
k:(p,q)∈ωk

(
1 + (Ip − µk)

T
(Σk + εU)

−1
(Iq − µk)

)
,

(6)
where |ω| is the total number of pixels in a window ωk cen-
tered at pixel k and ε is a smoothness parameter. Σk and µk

are the covariance and the mean of pixels intensities within
ωk. Ip, Iq and µk are 3× 1 (color) vectors, while Σk and the
unary matrix U are of size 3× 3.

The main advantage of the guided filter is that the compu-
tation cost is independent to the size of the selected window.
This is because it can be expressed as a linear transform as
follows:

C
′

all(p) = 1
|ω|

∑
k:p∈ωk

(αkIp + bk) (7)

ak = (Σk + εU)−1

(
1
|ω|

∑
p∈ωk

IpCall(p)− µkCall(k)

)
(8)

bk = Call(k)− aT
k µk, (9)

where Call(k) is the mean of Call in ωk.

3 Disparity Optimization
3.1 Improved Scanline Optimization

There are multiple disparity optimization approaches.
Semi-global scanline optimization is one of the most efficient
methodologies [11]. It gives accurate disparity results, while
at the same time has lower computational complexity when
compared to global optimization methods. More specifically,
this approach aggregates matching costs in 1D equally from
multiple directions.

In this work four directions are considered: left to right
(rlr = [+1; 0]T), right-to-left rrl = [−1; 0]T, up-to-down
(rud = [+1; 0]T) and down-to-up (rdu = [−1; 0]T) scan or-
ders (Fig. 1(a)). For a direction r ∈ {rlr, rrl, rud, rdu}, the
path cost for pixel p is recursively calculated from:

Lr(p, d) = C
′

all(p, d) + min
{
Lr(p− r, d),

Lr(p− r, d± 1) + π1,

min
i
Lr(p− r, i) + π2

}
−min

i
Lr(p− r, i),

(11)
where i ∈ {dmin, ..., dmax}, while p− r denotes the previous
pixel along direction.

Parameters π1 and π2 are two smoothness penalty terms
(with π1 ≤ π2) for penalizing disparity changes between
neighboring pixels. The work in [14] assumes that a depth
discontinuity usually coincides with an intensity edge; hence
the smoothness penalty must be relaxed along edges and en-
forced within low-textured areas. Therefore, it applies a sym-
metrical strategy so that π1 and π2 depend on the intensities of
both left and right images. In this paper, two criteria are used
to check depth discontinuity. The first criterion, similarly to
[3], is based on intensity difference, which is computed as:

∆Il(p) = max
c∈{R,G,B}

|Icl (p)− Icl (p− r)| (12)



Fig. 1: (a) Path directions used for scanline opti-
mization and (b) the (zoomed in) mean-shift seg-
mentation map of the left “Teddy” image.

Fig. 2: Disparity maps generated with the proposed work and
their corresponding disparity error maps for error threshold 1.

(π1, π2) =


(Π1,Π2), if (∆Il(p) ≤ Pth & ∆Ir(q) ≤ Pth)(
Π1

1.5 ,
Π2

1.5

)
, if (∆Ll(p) == 0 & ∆Lr(q) == 0)(

Π1

4 ,
Π2

4

)
, if (∆Il(p) ≤ Pth &∆Ir(q) > Pth) or (∆Ll(p) == 0 & ∆Lr(q) 6= 0)(

Π1

4 ,
Π2

4

)
, if (∆Il(p) > Pth &∆Ir(q) ≤ Pth) or (∆Ll(p) 6= 0 & ∆Lr(q) == 0)(

Π1

10 ,
Π2

10

)
, otherwise,

 (10)

and
∆Ir(q) = max

c∈{R,G,B}
|Icr(q)− Icr(q − r)| (13)

The second criterion, introduced in this paper, checks
whether two pixels belong to the same mean-shift segment.
Let us assume that after applying mean-shift segmentation to
the left and right images the label images Labl and Labr, are
acquired. Each segment is denoted by a specific label. The
second criterion is denoted as:

∆Ll(p) = Labl(p)− Labl(p− r) (14)

and
∆Lr(q) = Labr(q)− Labr(q − r) (15)

According to these criteria, π1 and π2 are defined accord-
ing to (10), where Π1 = 0.002 and Π2 = 0.006 are constant
parameters, Pth = 0.04 is a threshold, which determines the
presence of an intensity edge. The conditions to define π1

and π2 are examined in sequence. The first condition that
evaluates to “True” is the one whose statements option will
be executed.

The optimized cost volume is acquired by averaging the
estimated path cost from the path directories:

Cf (p, d) =

∑
r={rlr,rrl,rud,rdu}

Lr(p,d)

4 (16)

Existing methods, such as those in [3, 14] use only in-
tensity based criteria to check intensity discontinuity and de-
fine parameters π1 and π2. The proposed approach includes
an additional criterion based on mean-shift segmentation that
improves the refinement results, as it is experimentally veri-
fied. The reason behind this improvement is that sometimes
the first criterion denotes incorrectly a depth discontinuity due

to edges that may exist in image areas that belong to the same
depth but have some texture edges and not edges that corre-
spond to depth discontinuity. On the contrary, mean-shift im-
age segmentation is able to distinguish better between object
texture edges and object boundaries (this fact is evident, for
example, within the squared dashed region of Fig. 1(b) where
texture edges have been incorporated inside larger segments).
Therefore, the segmentation results are exploited in the defi-
nition of the smoothness penalties. In order to compensate for
segmentation errors (include in the same segment areas with
different depth) the denominator used for the definition of π1

and π2 is slightly increased to 1.5 for the case that the second
statement of (10) is satisfied.

3.2 Occlusion Handling
The left disparity map dLR(p) is acquired after applying

WTA to the cost volume Cf (p, d), which was computed con-
sidering as reference image the left image of the stereo pair.
If the right image is considered as reference image, then the
right disparity map dRL(p) is acquired. The computation of
dLR(p) and dRL(p) is fully independent. A prevalent strat-
egy for detecting outliers is the Left-Right consistency check
[14]. In this strategy, the outliers are disparity values that are
not consistent between the two maps and therefore, they do
not satisfy the relation:

|dLR(p)− dRL(p− dLR(p))| ≤ TLR. (17)

The threshold for outliers detection is set equal to TLR = 0.
The occlusion handling strategy is kept similar to the one

in [2] for computational simplicity. Therefore, an inconsis-
tent pixel p is filled by the disparity of its closest consistent
pixel. Practically, the disparity values of p’s left nearest con-
sistent pixel pl and p’s right nearest consistent pixel pr are de-
noted as dpl

and dpr
, respectively. Then, the disparity value

of min(dpl
, dpr ) is assigned to p.



In order to deal with horizontal artifacts that are produced
from this simple occlusion filling scheme, a bilateral filter is
used to smooth the filled regions. The bilateral filter weights
are given by:

Wp,q =
1

k
· exp

(
−
(

∆sp,q
γs

+
∆cp,q
γc

))
, (18)

where k is a normalization factor, ∆sp,q and ∆cp,q denote the
proximity distance and the color similarity between pixels p,
q and γs, γc are constant parameters that adjust the spatial and
color similarity. The parameters of the bilateral filter are set
as in [2]: γs = 9, γc = 0.1 and the window size is 19× 19.

4 Experimental Results
4.1 Set of optimum parameters

The parameters used for the experiments are the same for
all tested stereo pairs. The size of the window ωk in Section
2 is 19 × 19. The rest of the parameters used for the compu-
tation of the initial cost volume in Section 2 are defined as:
{α1, α2, Tgab, Tgra, Trgb, ε} = {0.20, 0.75, 0.015, 0.007,
0.028, 0.0001}. The parameters used for the mean-shift seg-
mentation in Section 3.1 are the spatial radius, which is set
equal to 3 and the feature space radius, which is set equal to
3. The selection of these strict values ensures that the seg-
mentation map will be of high reliability, meaning that most
likely a segment will not overlap with a depth discontinuity,
and this fact is verified also in [15] and [16].

4.2 Middlebury Online Stereo evaluation
The proposed algorithm is evaluated on the Middlebury

online stereo evaluation benchmark (reference period: Febru-
ary 2014). The disparity results of the proposed framework
accompanied with the disparity error maps, as extracted by
the Middlebury evaluation system, are visualized in Fig. 2.
Errors in non-occluded and occluded regions are marked in
black and gray respectively. The ranking results in Table 1,
for absolute threshold equal to 1, indicate that the proposed
method is 13th out of 149 methods that are included in the
Middlebury Stereo Evaluation. This is an important achieve-
ment bearing in mind the reduced computational complexity
of this algorithm and the very basic technique used for the oc-
clusion handling. Moreover, Table 1 shows that this approach
gives superior disparity results than [2, 4], which also exploit
the guided image filter.

In more detail, the proposed method ranks: 58th for the
“Tsukuba” image pair, 8th for the “Venus” image pair, 26th for
the “Teddy” image pair and 12th for the “Cones” image pair.
From Table 1, it is also obvious that the proposed approach
enhances significantly the previous works that are based on
the Guided Image Filter. In order to prove how the proposed
work fosters the disparity results, Table 1 also includes the
disparity results (“No Criterion” row) using the scanline opti-
mization without the proposed criterion to check depth dis-
continuity and the disparity results (“Intensity Diff.” row)
using the difference of intensities as in [2, 4] instead of the
dissimilarity measure exploited in this work.

Error Rate(All)
Algorithm Rank Tsuk. Venus Teddy Cones Av.E
Proposed 13 2.01 0.30 10.4 7.71 4.39
No Criterion 14 1.82 0.34 10.8 7.82 4.99
Intensity Diff. 19 1.96 0.31 10.5 8.11 5.06
Gabor[4] 23 2.30 0.35 10.5 7.60 5.03
CostFilt.[2] 37 1.85 0.39 11.8 8.24 5.55

Table 1: The rankings in the Middlebury benchmark.

Error% ∆d>1 ∆d>1 ∆d>2 ∆d>2
Visible All Visible All

Proposed 7.76 12.22 5.45 8.62
Inf. Perm.[5] 7.98 14.15 6.46 10.34
CostFilter[2] 8.40 15.06 6.80 11.82

Table 2: The error results for the extended stereo datasets.

4.3 Extended Comparison
Many of methods present comparative results on just the

four well-known stereo pairs from the Middlebury stereo
database, which are mentioned in Section 4.2. However, eval-
uation on limited data is not adequate to assess the overall
performance of an algorithm, since the average error rates of
the best performing techniques are quite close to each other.
Therefore, except for the four stereo pairs from the Mid-
dlebury online stereo evaluation benchmark, evaluation is
performed on two additional Middlebury datasets in order to
assess more efficiently the performance of the proposed im-
provements. The 2005 and 2006 datasets, presented in [17],
include 27 stereo pairs with their ground truth. The error per-
centage is measured for both non-occluded and all regions.
Table 2 shows the results for the percentage of erroneous
pixels having 1 or 2 disparity level difference with respect
to ground truth. The results regarding the rest of methods in
Table 2 are copied from the very recent work of [5]. Obvi-
ously, the proposed work gives better results than the rest of
the methods that are evaluated in [5]. The improvement is
more evident for the case of all regions and ∆d > 1.

5 Conclusion
In this paper, we propose the exploitation of the pixel dis-

similarity measure introduced in [12], which replaces the dif-
ference of pixels intensities. This replacement improves that
disparity results. Additionally, the optimization of the ini-
tial cost volume is performed using a semi-global matching
method, where a new criterion is introduced for the defini-
tion of the smoothness penalty terms that improves the dispar-
ity results. Extended experimental results on multiple stereo
pairs prove the efficiency of the proposed approach regarding
the disparity estimation problem. Another advantage point of
this method is that it is compatible for optimization on the
GPU and therefore can be exploited in Real-Time applica-
tions.

Future work could focus on the development of an effi-
cient technique for the occlusion handling approach.
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