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Abstract

Moving objects pose a challenge to every video stabiliza-

tion algorithm. We present a novel, efficient filtering tech-

nique that manages to remove outlier motion vectors caused

from moving objects in a per-pixel smoothing setting. We

leverage semantic information to change the calculation of

optical flow, forcing the outliers to reside in the edges of our

semantic mask. After a ’content-preserving warping’ and a

smoothing step we manage to produce stable and artifact-

free videos.

1. Introduction

In recent years, video surveillance technology goes in-

creasingly mobile following a wider trend. Body-worn

cameras, in-car video systems and cameras installed on

public transportation vehicles are only a few cases of mo-

bile surveillance infrastructure. Moreover, Law Enforce-

ment Agencies are increasingly including videos recorded

by mobile devices in their investigations. While, this new

source of videos opens up new opportunities for the au-

thorities, it also introduces new challenges in terms of pro-

cessing, manual or automatic. Besides the huge amount of

recorded footage, the produced content is usually unstable

and shaken, making their manual inspection an (even more)

cumbersome procedure and its automated analysis problem-

atic due to spatial inconsistency between frames.

Video stabilization is the process of generating a new

compensated video sequence, where undesirable image mo-

tion is removed and has been steadily gaining in importance

with the increasing use of mobile camera footage. Often,

videos captured with a mobile device suffer from a signif-

icant amount of unexpected image motion caused by unin-

tentional shake of their mounting, whether this is a hand,

body or vehicle. Given an unstable video, the goal of video

stabilization is to synthesize a new image sequence as seen

from a new stabilized camera trajectory. A stabilized video

is sometimes defined as a motionless video where the cam-

era motion is completely removed. In this paper, we refer to

stabilized video as a motion compensated video where only

undesirable camera motion is removed. This distinction is

critical since camera motion can contribute towards an aes-

thetically pleasing result and be instrumental for capturing

the details of a scene [6].

The first step towards video stabilization involves the

choice of a suitable model that will adequately represent

camera motion. Optical flow is the most generic motion

model and recent work has shown great potential in its use

for video stabilization. However, the optical flow of a gen-

eral video can be rather irregular, especially on moving ob-

jects at different depths of the scene, therefore, a motion

model with strong spatio-temporal consistency and smooth-

ness is required to stabilize the video. The approach of iden-

tifying discontinuous flows by spatio-temporal analysis and

enforcing strong spatial smoothness to the optical flow ne-

glects the semantic information of the scene contents, lead-

ing to severe artifacts when moving objects are very close

to the camera or cover a large part of it. This is due to the

fact that the distinction between background and foreground

objects is obscured by their comparable size [16].

In this paper, we are proposing the use of semantic in-

formation extracted from the examined scene together with

a dense 2D motion field to produce a model representing

the camera motion. The derived model allows us to gener-

ate stabilized videos with good visual quality even in chal-

lenging cases such as scenes with large foreground objects

which are common in footage from mobile cameras.

1.1. Related work

Video stabilization techniques can be roughly catego-

rized regarding their underlying motion model as 2D and

3D methods. 2D stabilization methods use a cascade of

geometric transformations (such as homography or affine

models) to represent the camera motion, and smooth these
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transformations to stabilize the video. The type of smooth-

ing can have a dramatic effect on the qualitative evaluation

of the result. One early method [17] used simple low-pass

filtering, which requires very big temporal support to elimi-

nate unwanted low frequency shaking (e.g. walking). Deal-

ing with that, Chen et al. [4] applied polynomial curve fit-

ting on top of Kalman-based filtering. Gleicher and F. Liu

[6] broke camera trajectories into segments for individual

smoothing, following principles of cinematography. Grund-

mann et al. [8] encapsulated this idea into an elegant L1-

norm optimization, while S. Liu et al. [15] split the frame

into multiple segments, each with its own path, and applied

a joint stabilization method.

3D methods use the estimated camera position in space

for stabilization and are, thus, heavily reliant on the ef-

fectiveness of structure from motion algorithms. Although

they give superior results on complex scenes with parallax

and depth changes, they are computationally heavier and

less robust. An example of early work is from Beuhler et

al. [3], who used a projective 3D reconstruction with an un-

calibrated camera for video stabilization. F. Liu et al. [10]

used 3D point correspondences to guide a novel and influen-

tial ’content-preserving’ warping method, whose efficiency

was later improved on planar regions by Zhou et al. [25]. S.

Liu et al. [14] used a depth camera for robust stabilization.

In the middle ground between the two, 2.5D methods

compensate for the lack of 3D information imposing ad-

ditional constraints. F. Liu et al. [11] built on the obser-

vation that feature trajectories from a projective camera lie

on a subspace and smoothed its basis eigenvectors. There

is an extension of this method for stereoscopic videos as

well [12]. Goldstein and Fattal [7] leverage the epipolar

relations that exist among features of neighboring frames.

Wang et al. [21] represented each trajectory as a Bezier

curve and smoothed them with a spatio-temporal optimiza-

tion. Though more robust than 3D methods, 2D ones de-

mand reliable tracking to construct feature trajectories. We

build on the work of S. Liu et al. [13, 16] which tries to alle-

viate the problem of acquiring long trajectories by smooth-

ing the pixel profiles instead.

2. Methodology

In this paper, the assumption made in [16] that the mo-

tion vector of each pixel should approximate the trajectory

of the corresponding point in the scene is adopted. Given

this assumption, instead of smoothing feature trajectories,

we can smooth the pixel profiles, where a pixel profile is de-

fined as the accumulated optical flow vector at each pixel lo-

cation. Thus, video stabilization can be achieved in a pixel-

wise manner by using a pixel profile stabilization model.

This assumption does not hold well, though, for scenes con-

taining sharp depth changes and moving objects, as they can

cause the optical flow field to be spatially uneven. In such
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Figure 1. Methodology Outline

Figure 2. Unfiltered smoothing failure

cases, as it can be seen in figure 2, smoothing the pixel pro-

files leads to artifacts. Therefore, we must modify the initial

optical flow and discard the motion vectors that cause these

distortions. In [16] this is performed in two iterative filter-

ing steps, a spatial and a temporal one, trying to enforce

spatio-temporal consistency.

Instead, we propose a novel method aiming to perform

motion outliers rejection on the optical flow field exploiting

semantic information in the context of video stabilization.

For this purpose we leverage state of the art semantic seg-

mentation [18, 24] of the scene examined to detect moving

objects of interest in a surveillance scene, such as people or

vehicles. Semantic segmentation masks provide the infor-

mation necessary to reject irregular motion vectors, regard-

less of objects’ size, in a single step, eliminating the need

for an iterative approach and leading to a visually pleasing

result.

2.1. Semantic optical flow refinement

Classical optical flow algorithms impose smoothness on

the resulting flow field in order to solve the brightness con-

stancy constraint equation [9]. This results in flow fields

with smooth transitions between areas with different mo-

tions, producing motion irregularities within a single object.



(a) Semantic mask (b) Optical flow calculated without our con-

straint and overlaid semantic boundary

(c) Completed flow field after naive filtering

Figure 3. Outlier filtering without optical flow refinement. Notice the ”shade” under the right arm and the blue colored artifact that fall out

of the semantic mask, resulting in insufficiently filtered flow.

(a) The frame from which we compute the se-

mantic mask

(b) New flow that respects semantic segmenta-

tion boundaries

(c) Flow free from motion vectors that cause

distortions

Figure 4. Outlier filtering with optical flow refinement. Notice the alignment between the motion vectors and the boundary in (b).

It is worth noting that this transition causes inaccurate mo-

tion vector estimation at both sides of the motion boundary,

since the two motion fields influence each other. However,

recent work on optical flow estimation has leveraged the use

of additional information to improve flow precision, partic-

ularly at object boundaries [19, 20].

In [19] a variational energy minimization approach is

employed on a grid of dense correspondences. This grid

is a product of interpolation with respect to a geodesic dis-

tance, whose cost function penalizes boundary crossing.

Normally, one would use an edge detection algorithm on the

video frame to define these boundaries. Edge detectors that

work on natural images, though, produce edges of varying

strength, which do not adequately restrict the interpolation

and result in flows that do not respect the boundaries of our

semantic segmentation, as seen in Figure 3(b).

In this direction, we acquire a semantic segmentation

mask for each frame in the examined video using [24]

trained with the PASCAL VOC dataset that contains 21 la-

bels including background. Given our application we are

only interested in moving objects (e.g. persons, cars, mo-

torbikes) and, thus, we discard all labels related to static

objects or background (e.g. potted plant, sofa). A naive ap-

proach would be to discard every motion vector under the

semantic mask as outlier. Not surprisingly, such a method

fails because of the discrepancy between the object bound-

aries that are delineated from the motion vectors and the

corresponding ones from the semantic masks (figure 3(c)).

Instead, we employ standard edge detection on the se-

mantic masks, producing a set of crisp boundaries surround-

ing the, potentially moving, area of our frame. Leveraging

the notion of geodesic distance that preserves object bound-

aries, we use these edges as input to the estimation of mo-

tion flow field to force the outlier vectors to reside within

the boundaries of the moving object (figure 4(b)). Thus, the

optical flow becomes consistent with our semantic segmen-

tation simplifying the stabilization pipeline.

2.2. Motion completion

The next step is to complete the missing values of the

optical flow field. We interpolate the outlier motion vectors

from a grid formed in a content preserving way [10]. We use

the motion vectors at the boundary of the semantic mask to

form control points for the energy minimization problem:

E = Ed + αEs, (1)

where Ed and Es are the data and similarity terms,

weighted by α. The data term is defined as a sum over all

inlier points p:

Ed(V ) =
∑

p

∥V πp − (p+ up)∥, (2)

with up being the initial optical flow at pixel p and V in-

dicating the unknown vertices of the new grid that enclose



p. πp is the vector of bilinear coordinates of point p at the

initial grid. Thus, Ed weighs toward accurate reconstruc-

tion at each data point. However, this could force the rest

of the pixels to be extremely warped or distorted which is

counter-weighted by the similarity term:

Es(V ) =
∑

u

| u− u1 − sR90(u0 − u1)∥
2, (3)

R90 =

[

0 1
−1 0

]

,

This term requires that each triangle, formed by u and two

of its neighboring vertices u0, u1, follows a similarity trans-

form. s = ∥u−u1∥/∥u0−u1∥ is a term computed from the

original mesh. The new vertices are calculated minimizing

a standard sparse linear system. The new motion values are

then bilinearly interpolated using the resulting grid.

2.3. Stabilization

The stable video is produced by smoothing each pixel

profile independently. We do not employ an adaptation

scheme for the temporal window, since all these approaches

require arbitrary thresholding and are heavily influenced

from the frame rate. The smoothing is achieved minimiz-

ing the following objective function:

O(Pt) =
∑

t

(

∥Pt−Ct∥
2+λ

∑

r∈Ωt

wt,r∥Pt−Pr∥
2
)

, (4)

where C is the cumulative motion vector field of the in-

put video at frame t and P the corresponding one of the

output video. wt,r is the weight of past and future frames

r in the temporal window Ωt and is calculated by wt,r =
exp(−∥r − t∥2/(Ωt/3)

2). The first term of this sum is the

similarity between the stabilized and the initial frames, a

factor that minimizes cropping, while the second term ex-

presses the similarity of the new frame to its neighboring

ones, which maximizes stability. Finally, λ acts as a bal-

ancing term that allows us to favor the one over the other.

The optimization is solved by a Jacobi-based iteration

[2] for each pixel by:

P
(ξ+1)
t =

1

γ

(

Ct + λ
∑

r∈Ωt,r ̸=t

wt,rP
(ξ)
r

)

, (5)

with the scalar γ = 1 + λ
∑

r wt,r and ξ being the itera-

tion index (by default, ξ = 10). Note that unlike Liu et

al. our algorithm runs only once. We render the final re-

sult by warping each frame with a dense displacement field

Bt = Pt − Ct.

(a) Scene with many faces (b) Inaccurate semantic mask

Figure 7. Semantic segmentation failure

3. Experimental results

We conducted a wide range of experiments on publicly

available baseline videos with moving objects, occlusions

and parallax. Additionally, we experimented on videos

from the surveillance domain, especially police body-cam

videos, which contain highly irregular motion (e.g. walk-

ing, running) and occlusions, especially from persons, by-

standers etc.

Our method manages to successfully filter out moving

objects in the majority of cases. Figure 5 shows a typical

failure case for most trajectory based methods, where an

object covering a significant portion of the screen crosses

the field of view. Naturally, such an object has a big effect

on the flow field and if we stabilize the video without some

way of filtering we see visible artifacts (e.g. the elongated

head of the lady in the foreground, together with the warped

body of the lady in the background in row 2). Our output

is stable and without artifacts. Similarly, in the surveillance

domain video of figure 6, which again contains a signifi-

cantly big moving object and heavy shake, one can clearly

see the distortion on the face of the officer, especially on the

last frame of row 2, which does not exist in our output. The

presented results are qualitative, since result quantification

is not a trivial matter in video stabilization, due to the fact

that there are no benchmarks or widely accepted metrics

available.

3.1. Implementation details

We implemented our method in Python and run it on

commodity pc hardware consisting of an i7-6700K CPU,

GTX 1070 GPU with 32 GBs of RAM on Ubuntu Linux

14.04. For the initial semantic segmentation masks and op-

tical flow we used the, publicly available, CRF-RNN [1, 24]

as well as the GPU implementation of DeepMatching [22]

in conjunction with EpicFlow [19]. For the videos in our

domain we empirically choose α = 1, λ = 1 as they give

the most pleasing results.

4. Conclusions

We presented a novel video stabilization pipeline that

leverages the latest advances in semantic image segmen-



Figure 5. Typical failure case for trajectory based methods. Our system manages to stabilize this heavily occluded scene. The rows from

top to bottom correspond to the original, stabilized without filtering and successfully stabilized cases. Notice the heavy distortions in the

second row.

Figure 6. Four frames of a video in the surveillance domain. Again, the first row depicts the original, unstable, video, the second one is a

stabilized without semantic filtering and the third a stabilized version with our method. Notice the distortions around the officer’s head at

the last row, while our results remain crisp.



tation and fuses this information to refine the calculation

of optical flow. This way we manage to produce stable,

artifact-free videos in scenes with moving objects, occlu-

sions and parallax.

4.1. Limitations and future work

Our method does not fall in the realm of 3D methods

and, as a result, cannot provide 3D camera motion planning.

The degree of stabilization, though, can be controlled by se-

lecting the appropriate temporal support. Our method relies

on the quality of optical flow calculation and image seg-

mentation, which, as seen in figure 7, can identify persons

unexpectedly (e.g. toys, posters). Temporally consistent se-

mantic segmentation is a possible solution for the removal

of such artifacts, something that we are keen to explore.

Since we have shown that it is possible to integrate deep

learning methods in the filtering stage of a stabilization

pipeline, we would be interested in examining the smooth-

ing and result synthesis steps also. There are promising re-

sults in the field of novel view synthesis [5] and image in-

painting [23] which we are keen to explore and could lead

to a fully neural, full frame architecture.
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