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a b s t r a c t

This paper presents the methods that have participated in the SHREC 2022 contest on protein–ligand
binding site recognition. The prediction of protein- ligand binding regions is an active research domain
in computational biophysics and structural biology and plays a relevant role for molecular docking
and drug design. The goal of the contest is to assess the effectiveness of computational methods in
recognizing ligand binding sites in a protein based on its geometrical structure. Performances of the
segmentation algorithms are analyzed according to two evaluation scores describing the capacity of a
putative pocket to contact a ligand and to pinpoint the correct binding region. Despite some methods
perform remarkably, we show that simple non-machine-learning approaches remain very competitive
against data-driven algorithms. In general, the task of pocket detection remains a challenging learning
problem which suffers of intrinsic difficulties due to the lack of negative examples (data imbalance
problem).

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The general objective of this SHREC track is to evaluate the ef-
ectiveness of computational methods in recognizing most likely
rotein–ligand binding sites based on the geometrical structure of
he protein. Starting from a set of protein–ligand complex struc-
ures obtained via X-ray crystallography and deposited in the
DB repository, we build the proteins’ Solvent Excluded Surface
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(SES) [1] via the freely available software NanoShaper (NS) [2,3].
Additionally, for each structure we provide an anonymized PQR
file (neither residues, nor atomic names and charges) containing
the atomic centers and radii. The track is jointly organized by
IMATI-CNR and the CONCEPT Lab at IIT.

Motivation. The molecular surface of a protein, often defined as
the separating surface between solvent (water) accessible and
inaccessible regions [4,1,5], plays a fundamental role in the char-
acterization and prediction of the interactions of a protein with
other biomolecules. In this study, we aim to to identify regions
on the protein surface (pockets) able to bind ligands, based on
their shape. The prediction of pockets is one of the focal points
of activity in computational biophysics and structural biology.
Indeed, when a small molecule binds to a protein, it affects
its biological behavior. Therefore, the identification of candidate
binding sites is a key aspect, which is essential and preparatory to
drug design. Adequate computational techniques able to predict
these regions of potential interaction are important because they
can leverage the information obtained from the growing number
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Fig. 1. Hen egg white lysozyme (PDB code, 1hew) (a) Atom spheres represen-
tation (PQR). (b) SES realized with NanoShaper. The binding site of the depicted
ligand is highlighted in orange with: (a) atoms within 5 Å from the ligand, (b)
surface vertices within 4 Å from the ligand.

of known (co-crystallized) protein–ligands systems and lead to
innovative therapeutic strategies.

Description of the track. A dataset of approximately 1090 protein
surfaces and corresponding to about 1720 relevant binding sites
(regions close to the ligand) is provided to the participants. The
dataset is split into a training set and a test set (in the proportion
85–15).

For the training set we identify the set of vertices which are
within 4 Å of any ligand atom center, and we label in the PQR the
set of atoms whose center is within 5 Å of any ligand atom center.
We hereby refer to these sets of vertices and atoms as binding
ockets. An example of protein surface and of the corresponding
ocket is depicted in Fig. 1. The information regarding ligand
inding sites is provided in a separate TXT file. The TXT file repre-
ents the pockets of the cognate structure via a vector containing,
or each vertex of the corresponding OFF file (and in the same
rder), either zero (i.e., this vertex is not known to contribute to
binding site) or a strictly positive integer (different values code
or distinct protein–ligand binding sites). The same information
s replicated in the one-but-last (i.e., the charge) column of the
QR file.
To compare the performance of the candidate methods, we ask

he participants to provide us with a vector representing the 10
ost likely binding sites they identify for each protein in the test
et, either in terms of the vertices (if using the OFF files) or of the
toms (if using the PQR files). We further ask the participants to
rovide a ranking of them, from the most to the least likely. We
ant to highlight that:

1. A single structure can contain more than one binding site
(more than one co-crystallized ligand).

2. The training set does not imply any ranking. All provided
binding pockets are positive examples and should be con-
sidered equally important.

he remaining of this paper is organized as follows. In Section 2
e offer a perspective on the state of the art and point to previous
enchmarks/reviews that aim at comparing pocket identification
lgorithms. We also discuss the general challenges associated to
rotein binding site learning and prediction. Then, in Section 3
e detail the dataset and its post-processing, and in Section 4 the
lassification metrics used in the contest. The methods submitted
or evaluation to this SHREC are detailed in Section 5, while their
utcomes are presented in Section 6. Finally, discussions and
oncluding remarks are in Section 7.
21
2. State of the art and related benchmarks

Given the molecular surface of a protein, in general a pocket
is a concave region of the molecular surface which is accessible
from the solvent (e.g., clefts/grooves or invaginations).

The detection of pockets and cavities has been a long-standing
challenge in the biophysical community. Therefore a large
amount of algorithms have been proposed to tackle this prob-
lem. Such algorithms can be partitioned into three broad cate-
gories [6]: (a) Evolutionary and template based algorithms (based
on multiple sequence alignments to find the location of binding
sites on a given protein). These algorithm are mainly addressing
the problem from the chemical/biological perspective. (b) Energy-
based algorithms (binding sites are detected by computing the
interaction energies between protein atoms and a small-molecule
probe). These algorithms tackle the problem from a physical
prospect. (c) Geometric algorithms, which focus on the geometric
properties of the molecular surface to detect cavities that may
be binding sites. The more recent tendency is to use a mixture
of the three approaches to exploit at maximum the available
information. We focus here on geometric methods. These can
be roughly partitioned into four main sub-categories: 1. Sphere
based methods: pockets and cavities are defined by filling voids
with probe spheres. 2. Grid based methods: a three-dimensional
grid scanning is performed which establishes for each grid point
whether it belongs or not to the protein. Then, according to
different geometric criteria, the grid points belonging to pock-
ets/cavities are identified. 3. Tessellation/alpha shape methods:
they rely on the generation of the Delaunay triangulation of
the molecular surface and the definition of pockets via filtered
sub-complexes of this triangulation (alpha-shape) which define
voids on the surface [7]. 4. Surface-based methods: a much
smaller set of methods focusing on binding site identification
via local analytical geometric properties of the molecular surface
(e.g., curvature).

Whatever the pocket generation is, the final step involves
the ranking of the putative binding pockets which have been
identified. Several methods return a ranking which is based on an
predetermined scoring which is not trained. Despite its simplicity,
one of the most widely adopted and successful scoring systems
is to use volume ranking [8]. Some algorithms such as grid based
methods, also consider algorithm-specific descriptors (such as the
degree of ‘‘buriedness’’ [9]) or chemical information based on the
degree of evolutionary conservation of each residue [10,11].

Another approach is to rank putative pockets according to
more complex descriptors trained over datasets by fitting a nu-
merical function via some regression technique [12–14]. For in-
stance, the Fpocket [12] algorithm (an open source method based
on Voronoi tessellation available at [15], which is widely used
in the literature) employs five descriptors and returns a ligand
coverage score as an independent variable. The descriptors are
five independent values that depend on: (i) number of alpha
spheres, (ii) local mean hydrophobic density, (iii) proportion of
apolar alpha sphere, (iv) a polarity score defined as a binarity
sum of the polarity over the amino acids in a pocket, (v) the
alpha sphere density, i.e., the average of the pair to pair dis-
tances among the alpha spheres in a pocket. The Fpocket standard
parameters are determined using semi combinatorial/empirical
optimization procedure trained on 307 structures. Another ap-
proach which has been explored is to learn a (druggability) score
by machine learning methods, such as, logistic regression [16] and
Support Vector Machine [17]. This score reflects the probability
of a binding site to be druggable. A drawback of this type of
approaches is that a choice must be made upon a (small) set of
parameters on which to build the regression. This requires that a
good degree of a priori knowledge is available to select the most
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elevant parameters, which might considerably vary according to
he considered system and problem. On the other hand, if one
onsiders a large set of (probably redundant) variables, the risk
f overfitting and of losing generality, further increases. Another
otential problem is to rely too much on the fitting over the
hosen score. For instance this could be a ligand coverage score,
epresenting the fraction of ligand in contact with the binding
ite (see Section 4) [12], or the hit rate of a binding site inferred
hrough a large screening database [14]. A nice exception among
inear combination of variables used to obtain a scoring function
or druggability is the one proposed by Cheng et al. [18], where
model-based approach yields a very good prediction of drug-
ability using solely fundamental biophysical principles based on
urface features of the target binding site (curvature and binding
ite surface area) and some pre-determined constants.
More recently, a new family of data driven approaches has

een proposed, which employs a reverse strategy. Rather than
sing ML to classify and rank previously generated putative pock-
ts, they focus on predicting high-binding-probability small areas
s such and then grouping them via an unsupervised clustering
pproach so as to construct a binding pocket [8,19]. An advantage
f the latter kind of methods is that they are able to return
rather small set of putative pockets compared to the more

tandard approaches since the selection of valid binding surface
oints happens upstream, before the actual pocket generation.
ethods falling in this category, heavily rely on chemical in-

ormation which is gathered (learned) from large protein–ligand
inding datasets containing labeled examples [16,20,17], which
ften rely on some (strong) assumptions on the negative exam-
les (e.g., regions not observed in contact with the ligand, are
abeled as non-binding) [21].

Very accurate comparative reviews can be found in the litera-
ure that discuss pros and cons of each method both in terms of
utcome and performance [22,6,19,8].
In this work we aim at assessing and supporting approaches

hich can be of interest for the computer graphics community,
ence those based on geometric and ML-driven techniques. This
s why we focus on methods which use geometric properties
f molecular surfaces (surface-based methods) in combination
r driven by ML approaches. These types of approaches, and
specially the combination with ML (without any use of chemical
nformation), are still relatively poorly explored for the pocket
etection task.
This SHREC contest differs from previous SHREC contests re-

ated to proteins retrieval and classification, e.g., [23,24], because
he focus here is the identification of delimited binding sites
ather than the comparison of the whole molecular surface or its
omains. Moreover, it also differs from contests on the classifica-
ion of cryo-electron tomograms, e.g., [25], because the structures
e consider are obtained at a finer level of resolution, and we are
ot focusing in the interaction of a complex system of thousands
f proteins.

.1. Discussion

Learning the inherent features of a ‘‘druggable’’ pocket is a
ery problematic task. Indeed, already the construction of a bal-
nced training set for conventional supervised learning is an
ll-posed problem since one is forced to start from 3D structures
btained via X-ray crystallography. As a matter of fact, these
xperiments point to positive samples, but there is no practical
ay to identify negative labeled ones. Indeed, an empty pocket
oes not imply the pocket to be undruggable [26]. That is why
e can claim that we have available only positive examples in
ur dataset, as proposed in the training set of this Shrek track.
urthermore, the ligand binding process may cause structural
 e

22
rearrangements of the protein around the binding region, further
complicating the task of identifying promising candidate sites in
the so-called ‘‘apo’’ structure of the protein [27].

The problem of pocket retrieval thus appears as an instance
of a one-class discrimination problem [28]. One-class discrimina-
tion is a learning task that typically arises in outlier (anomaly)
detection or, more generally, in binary discrimination data mining
problems where obtaining examples of one class can be too
expensive or daunting, or where examples of one class are largely
under represented (data imbalance) [29,30]. Different approaches
are used in the literature to solve one-class or data imbalance
problems. These are mainly based on two strategies. 1. Fit a
probability distribution whose support includes as much as pos-
sible the positive data [30] (anomaly detection approaches such
as SVDD [31], or Isolation Forest [32]).2 2. Use standard binary
classificators by generating meaningful instances of the negative
class (by some a priori assumptions on the distribution of the
negative examples/outliers generation [29]).

3. Dataset and data preparation

In this work, we extract an original set of protein–ligand com-
plexes from the binding-MOAD database [33]. The set of struc-
tures is selected by considering complexes with ligand molecular
weights larger than 200 Da, a resolution better than 2 Å, bind-
ing data available, and removing redundant structures (> 90%
equence identity). The Binding MOAD database enables the sepa-
ation of biologically-relevant ‘‘valid’’ ligands from ‘‘invalid’’ ones,
hich have no biological function.
The database is processed using a custom, freely distributed,

ython script [34] which: (i) determines which subset of the
DB file represents the valid ligand according to the binding
OAD website information; (ii) removes the ligand and Hetero-
eneous atoms (HETATM) from the input PDB file and creates
PQR file using the AMBER force field via the pdb2pqr soft-
are [35]; (iii) exports the valid ligands heavy atoms in a xyz

ile; (iv) creates a text file containing a map between structure
nd ligand(s) discarding any invalid ligand and any ligand which
as no full correspondence with what expected from the MOAD
ebsite naming scheme. Furthermore, we also excluded from the
atabase the (very large) structures containing more than 10000
ines in the PQR format. This results in an initial database of 1100
tructures and 1808 ligand binding sites. Then, we assembled the
nformation used in this track. First, using NanoShaper, from the
riginal PQR file we build the triangulation (in OFF format) of
he SES molecular surface. Given the (valid) ligands heavy atom
oordinates, the ground truth binding region is determined by
easuring the distances between ligand atoms and triangulation
ertices or protein atoms: vertices within 4 Å from any ligand
tom center are flagged in a separate TXT file where each entry
s associated to a line in the OFF file which is either zero (not
nown to contribute to any binding site) or a positive integer,
here different numbers identify distinct protein–ligand binding
ites; protein atom centers within 5 Å are flagged in the same
ay by substituting the charge column of the PQR file (one-but-

ast column). The PQR file is then anonymized by substituting
ll atom names with “C”, residues with “UNK”, and randomly
huffling all lines. In a post-processing step, we check also for
edundant binding sites in those structures containing multiple
o-crystallized ligands. When a structure contains more than
ne co-crystallized ligand, we established the amount of overlap
etween different binding regions and discard regions which

2 This does not imply that the distribution is always explicitly fitted, but the
oncept of hyperplanes or hyperspheres containing positive instances is always
mbedded.
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re very overlapping. Considering as binding region the protein
toms close to the ligand as defined above (flagged lines of the
QR), we consider two measures: the number of protein atoms
hich lie in the intersection of the protein–ligand binding site
ormalized by the number of atoms of each site, and the Jaccard
ndex.3 If the Jaccard index is larger or equal than 30% or if any
f the normalized intersections is larger or equal than 40%, we
xclude the most overlapping binding site (the one with highest
ormalized intersection). This results in a set of 1750 well defined
igand binding sites.

Finally, a last post-processing on the flagged vertex is per-
ormed, resulting in 1091 structures and 1721 binding sites. More
recisely, each graph behind the mesh data structure is analyzed
o: discard molecular surfaces with more than one geometric
onnected component, whenever such additional components are
ot inner cavities; clean the segments represented by the flagged
ertices to get rid of undesired holes and possible secondary (con-
ected) components in the texture. This set is split into a training
nd a test set in the proportion 85–15. All flags are removed from
he test set before handling the data to the participants.

. Evaluation measures

In the following, any co-crystallized ligand is reduced to its
ubset of heavy atoms lying within 5 Å of any protein atom. This
voids considering in the evaluation parts of the ligands which
rotrude into the solvent.
Inspired by state-of-the-art biophysical pocket detection

ethods [12,36], we here adopt a figure of merit based on the
ombination of two scores.

igand coverage score. It represents the fraction of ligand heavy
toms (i.e., excluding Hydrogen) within a threshold distance of
he protein atoms (PQR file) or of the surface vertices (OFF file)
hat compose a putative pocket. For a given pocket, indicating
ith d(i, j) the Euclidean distance between entries i and j, which
an be either atom centers or vertices composing the pocket set
, and ligand(s) heavy atom centers, which form the L set, we
ave

C =
1
nL

nL∑
j=1

δij for ∀ i ∈ P with δij =

{
1 if d(i, j) ≤ d∗

0 if d(i, j) > d∗

where nL is the number of ligand atoms, nP the number of pocket
elements (atoms or vertices), and d∗ a distance threshold. For
a visual representation of LC score, see Fig. 2. A high Ligand
Coverage score denotes a pocket in contact with most of the co-
crystallized ligand. However, this score alone does not exclude
very large surface regions that go beyond the real pocket. Thus,
limiting the evaluation of a prediction to the LC score would be a
poor estimate of the quality of a prediction (virtually, the whole
protein structure would score 100% on LC score).

Pocket coverage score. It represents the fraction of the surface
belonging to a pocket which is within a threshold distance from
any ligand heavy atom. This score is very similar to the former,
but it is referred to the pocket (the normalization is thus given
by the total number of atoms or vertices constituting the putative
pocket):

PC =
1
nP

nP∑
i=1

δij for ∀ j ∈ L with δij =

{
1 if d(i, j) ≤ d∗

0 if d(i, j) > d∗

For a visual representation of PC score, see Fig. 2. A high Pocket
Coverage score implies that the putative pocket is mostly in close

3 Given two sets A, B, the Jaccard index is J =
|A∩B|

.

|A∪B|

23
Fig. 2. A visual representation of LC and PC scores. Reworking of a picture
in [36].

proximity of the ligand. Again, this score alone would not be
sufficient to evaluate correctly a prediction. Indeed, too small
pockets with respect to a larger co-crystallized ligand would score
very high in PC but could be missing large parts of the binding
region.

Threshold values. For pockets expressed in terms of protein atoms
(PQR files) we use d∗

= 5 Å. Since triangulation vertices are
closer to the solvent than atom centers, we adopt a smaller
distance threshold d∗

= 4 Å when evaluating putative pockets
based on OFF files. These choices reflect the thresholds used when
generating the training set.

Finally, a putative pocket is considered to be a correct match
if it scores at least 50% in Ligand Coverage and at least 20% in
Pocket Coverage. When evaluating the results, we keep track of
these scores separately, so as to have a more detailed statistical
characterization of the performance of a method.

5. Description of methods

Eight groups from four different countries registered to this
track. Four of them proceeded with the submission of their re-
sults. In the following, we denote the methods proposed by the
four participants as M1, M2, M3, and M4. Specifically,

• method M1 is proposed by Hao Huang, Boulbaba Ben Amor,
and Yi Fang;

• method M2 is proposed by Yuanyuan Zhang, Xiao Wang,
Charles Christoffer, and Daisuke Kihara;

• method M3 is proposed by Apostolos Axenopoulos, Stelios
Mylonas, and Petros Daras;

• method M4 is proposed by Luca Gagliardi and Walter Roc-
chia.

Lastly, Luca Gagliardi, Andrea Raffo, Ulderico Fugacci, Silvia Bia-
sotti, and Walter Rocchia are the organizers of the SHREC 2022
track on protein–ligand binding site recognition.

The remaining part of this section is devoted to describe the
4 proposed methods. While each method will be discussed in
detail in the corresponding subsections, one could preliminary
classify them based on their input format and on their adopted
strategy. Concerning the input, M1 is the only method adopting
the OFF files as a representation of the molecular surface, while
M2, M3, and M4 feed their approaches with models expressed
through anonymized PQR files. Differently, focusing on the pro-
posed strategies, M1, M2, and M3 exploit statistical learning,
while M4 adopts a direct approach.

5.1. M1: Point Transformer

Transformer was originally proposed for machine translation
and it has achieved notable performance on various computer
vision tasks [37]. Due to the fact that input proteins are pro-
vided in the form of triangulated meshes, a Transformer-based
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c
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Fig. 3. A graphical representation of the strategy adopted in method M1. The figure on the top displays the pipeline while the one on the bottom depicts the model
architecture. ‘‘−’’ sign (orange) and ‘‘+’’ sign (purple) represent negative and positive curvature values per-vertex. The label ‘‘M’’ stands for multi-layer perceptron
(MLP), ‘‘T’’ for point transformer layer, ‘‘D’’ for transition down, and ‘‘U’’ for transition up. The bottom numbers indicate the number of vertices and channel size.
neural network model [38] is adapted to learn per-vertex local
shape geometric features. The Transformer-based model, initially
developed for the purpose of segmenting 3D point clouds, is
customized to segment binding regions on 3D protein shapes.
After being trained on a relevant dataset of protein shapes, the
model is able to learn discriminative per-vertex local shape de-
scriptors for binding region prediction. A visual description of
the pipeline adopted in method M1 is depicted in Fig. 3. Starting
from a given protein mesh (top-left), mesh surface is smoothed
using Laplacian, then per-vertex curvature is computed. A 5-
dimensional vertex feature (i.e., coordinates and curvatures) is
fed into a Transformer-based neural network to predict a binary
segmentation result as a ligandability score. Finally, the candidate
binding region vertices are clustered based on their ligandability
scores and the binding regions are formed and ordered according
to the vertex scores within each region.

5.1.1. Feature extraction
The first step of the proposed method smooths mesh surfaces

by adjusting vertex positions using Laplacian smoothing [39],
with the effect of ‘‘relaxing’’ the meshes, making the triangles
better shaped and the vertices more evenly distributed. Specif-
ically, for each vertex v, a list of vertices N(v) which are directly
onnected to v is determined. Then, an iteration phase begins
ver all vertices. For each vertex v, the coordinates of v are

updated according to an average of the connected vertices N(v).
A relaxation factor r is applied to control the amount of displace-
ment of v. The process repeats n times for each vertex until the
desired result is obtained. In the experiments, the parameters
r and n are set as 0.2 and 200, respectively. For the smoothed
meshes, each vertex v is represented by a 5-dimensional feature
vector fv = [x, y, z, g,m] where [x, y, z] denotes the normalized
Euclidean coordinates and [g,m] denotes Gaussian curvature and
Mean curvature, respectively. The feature vector fv is then fed
forward to a neural network model as described below.
24
5.1.2. Adopted neural network
Point Transformer [38], a Transformer-based neural network

model as shown on the bottom in Fig. 3, is employed as it
has achieved state-of-the-art performance on point cloud object
shape classification, shape part segmentation and scene segmen-
tation. The network adopts a U-Net [40] architecture consisting of
an encoder and a decoder. The encoder consists of five blocks and
each block contains a transition-down layer to reduce shape reso-
lution and a point transformer layer to aggregate local geometric
features for each vertex, except for the first block containing an
multi-layer perceptron (MLP) layer to expand each vertex feature
from 5 dimensions to higher dimensions. Similarly, the decoder
consists of four blocks and each block contains a transition-up
layer to recover shape resolution and a point transformer layer
serving the same purpose as in the encoder. The tailing MLP layer
is utilized to regress the final results. We refer the reader to [38]
for the description of internal layer structures.

The binding region prediction is treated as a binary shape
segmentation where 1 represents the class of binding regions and
0 denotes the class of non-binding regions. A weighted cross-
entropy loss is employed to train the network. The weight for
each class in the loss is inversely proportional to the number
of vertices belonging to the corresponding class. The proposed
model is trained on the provided dataset, which comprises 935
protein shapes for training and 165 shapes held out for testing.

5.1.3. From scores to binding sites
For each vertex v, a ligandability score is defined as LS(v) :=

max{pv
1 − pv

0, 0} where pv
i is the un-normalized probability gen-

erated by the network for class i. Ligandability is intended as
the capability of a given region to bind a ligand, not necessar-
ily resulting in a biological outcome [41]. To prepare putative
binding region predictions, the vertices that have ligandability

score lower than a given threshold (default t = 2.0) are filtered



L. Gagliardi, A. Raffo, U. Fugacci et al. Computers & Graphics 107 (2022) 20–31

o
r
t
r
m
c
l
p
e
t
t
o
t

B

Fig. 4. A graphical representation of the strategy adopted in method M2.
ut. Then, the remaining vertices are candidate to form binding
egions and which need to be spatially grouped. Due to the fact
hat different protein meshes have varying numbers of binding
egions which are unknown in advance, we cannot utilize K-
eans or hierarchical clustering algorithms. We instead opt to
luster using the DBSCAN [42] algorithm. We input per-vertex
igandability scores (above the threshold) to DBSCAN and the two
arameters eps and min_samples in DBSCAN are set to the average
dge length and 5, respectively. A predicted binding region is
hen formed by the set of vertices in a cluster. Next, similar
o [43], each region is assigned a score calculated as the average
f squared ligandability scores of all of the vertices that define
he region:

RScore :=
1
|C |

|C |∑
i=1

[LS(vi)]2,

where |C | is the number of vertices in a cluster. Squaring of
the ligandability scores puts more emphasis on the vertices with
higher ligandability score (i.e., vertices that are classified as lig-
andable with more confidence). The very last step involves re-
ordering the putative binding regions in a decreasing order of
their BRScore and assigning positive integer ranks to each binding
region with the most confident region assigned with the smallest
rank number.

5.1.4. Computational aspects
The experiments are performed on a machine with an Intel(R)

Xeon(R) E5-2680 v4 2.40 GHz CPU supporting AVX2, two GPUs
V100 with 32 GB of memory each, and with 80 GB RAM mem-
ory. The code for vertex feature extraction uses the APIs from
Visualization Toolkit (VTK), the implementation of the network is
partially adapted from Point Transformer [38] written in Python
with PyTorch 1.7.1 as the deep learning library, and the DBSCAN
utilizes the API from scikit-learn. The training takes around 15.5 h
with a batch size of 8 for 100 epochs. The time required for fea-
ture extraction (smoothing and computing curvature) is around
40 min for the training set and around 5 min for the testing set.
The computation of the score for the test set through the trained
network takes around 2 min for the testing set. The time for
identifying the binding sites given the score is around 1.5 min
for the testing set.
25
5.2. M2: GNN-Pocket

Method M2, named GNN-Pocket, is developed to detect pock-
ets on protein surfaces and it is based on the use of a graph
neural network (GNN). VisGrid [44] and ghecom [45] is adopted
to extract features for each atom. Then, a graph with these atoms
is constructed. Finally, a 4-layer GNN [46,47] is developed in
order to return, for each atom in the input protein surface, its
probability of belonging to a pocket.

A visual description of the pipeline adopted in method M2 is
depicted in Fig. 4.

5.2.1. Feature extraction
First, three types of features are collected by VisGrid and

ghecom. VisGrid [44] uses a voxel-based visibility criterion to
identify pockets in a protein structure. Ghecom [45] identifies
deep and shallow pockets by using spherical probes of different
sizes. The first feature is a binary output from VisGrid, which
indicates if an atom has a visibility lower than a cutoff. The second
feature is the number of closest grid points that are predicted
as pockets by ghecom. As the third feature, the number of grid
points within 8 Å that are predicted as pockets by VisGrid is cho-
sen. Finally, three features are concatenated into a 3-dimensional
vector constituting the input embedding of the neural network.

5.2.2. Adopted neural network
The collected features are adopted for constructing graphs

having as nodes the atoms of the input protein. After having
evaluated about a dozen GNN models with different feature com-
binations and graph choices, two graphs are constructed using
different edge connecting criteria. In Graph1, an edge is built if
the distance between two atoms is smaller than the sum of their
radius. In Graph2, two atoms are connected if they are closer than
the sum of radius plus the size of a water molecule (2.8 Å). To
train the GNNmodels, the provided dataset of 925 proteins is split
into two sets: 740 proteins for training and 185 for validation. In
training, Dice loss, which considers the intersection and union of
a prediction and the ground truth, is adopted. The method makes
use of the Adam optimizer with the following configuration: a
learning rate of 0.001; a linear learning rate decay; an exponential
decay rate for the 1st momentum estimate of 0.9; an exponential
decay rate for the 2nd momentum estimate of 0.999; a weight

−6
decay of 10 .
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Fig. 5. A graphical representation of the strategy adopted in method M3.
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.2.3. From scores to binding sites
Among the constructed GNN models, four models that have

relatively high recall or F1 score are chosen. Then, an ensem-
le model that combines the four models by averaging their
ocket probabilities is considered. Atoms are predicted as within
pocket region if their probability is higher than 0.5. Since it

hows the highest F1 score, the ensemble model is selected as
inal model. In the test set provided by the organizers, there
re 5 proteins where prediction does not include more than 10
ocket atoms. In those cases, VisGrid output is directly used as
rediction. A bottom-up hierarchical clustering method, which
inimizes the distance between the closest pairs of clusters, is
dopted to group pocket atoms into pocket regions. The top-10
ockets by the sum of probability values of atoms are selected.

.2.4. Computational aspects
The GNN model is trained on a machine with an Intel(R)

eon(R) 3.60 GHz CPU and a NVIDIA RTX 2080Ti GPU, with disk
emory of 3.7 TB. The language for model implementation is
ython. For training stage, each GNN model takes around 24.5 h
ith 100 epochs. For inference stage, it takes 1 min 42 s for a
tructure of 2269 atoms. Feature extraction takes 1 min 30 s,
ncluding 5 s to run VisGrid, 7 s to run ghecom, 1 min 18 s
o build adjacency matrix and prepare feature embedding. GNN
odel takes 12 s to do inference. For model ensemble and clus-

ering stage, it takes 2 s to ensemble predictions and 10 s to get
lustered pockets.

.3. M3: DeepSurf

The strategy adopted by M3 follows the recent advances in
he machine learning field and the extensive application of deep
earning methods on various tasks. More specifically, M3 em-
loys DeepSurf [48], a recently proposed deep learning approach
or the prediction of potential binding sites on proteins. Deep-
urf combines state-of-the-art deep learning architectures with
surface-based representation, where a number of local 3D vox-
lized grids are placed on the protein surface. A visual description
f the pipeline adopted in method M3 is depicted in Fig. 5.

.3.1. Feature extraction
Firstly, if not provided, the molecular surface of the protein

s created in a triangular mesh format. Then, an optional mesh
implification step takes place to avoid unnecessary redundancy
f points. This is achieved by grouping adjacent surface points to
lusters using the K-means clustering algorithm, while keeping
s representative point for each cluster only the closest one to
he cluster center. The density of the remaining surface points is
ontrolled by the parameter f , so as, if the initial surface points
re np, the final ones are np/f . Centered at each sample point P of
the surface, a local voxel grid of size 16 × 16 × 16 and resolution m

26
1 Å is computed. To achieve rotation invariance before the feature
computation, the local grid is oriented such that the z-axis is
always parallel to the normal vector n on P , i.e., perpendicular to
the surface (see Fig. 5). The next step is to calculate the necessary
features for each voxel of the local grid, using the featurization
scheme proposed originally in [49]. According to this scheme,
18 chemical features are calculated per protein atom and each
grid voxel receives the features of the atoms inside it. This step
requires information on the atom types in order to calculate the
necessary features. Since in this track, the provided protein files
lack such information, this information was inferred from the
atom radii, which in general can be regarded as a highly confident
indication of the atom type.

5.3.2. Adopted neural network
The previously described steps allow to form a 4D tensor

for each surface point P , which is imported to a 3D-CNN and
produces at the output a ligandability score in the range of [0, 1].
his score denotes the probability for the surface point P of
elonging to a binding site. The proposed methodology is generic,
eaning that any 3D-CNN architecture that receives as input a
D tensor and returns as output a float value in range [0, 1] can
e used. Nevertheless, the considered architectures are two: a
D-ResNet and a custom Bottleneck-3D-LDS-ResNet, which has
hown in previous experiments similar performance with much
ewer parameters [48].

.3.3. From scores to binding sites
After obtaining ligandability scores for all surface points, those

oints with score less than a ligandability threshold T are con-
idered not reliable and are discarded, while the remaining ones
re clustered in the 3D space using the mean-shift algorithm. The
reated surface clusters correspond to the binding sites, which are
orted based on the average ligandability scores of their member
oints. Finally, the surface points from each cluster are mapped
o their closest protein atoms in order to obtain binding sites at
he atomic level.

.3.4. Computational aspects
DeepSurf was originally trained on the large scPDB database [50

hich comprises 16034 entries corresponding to 4782 proteins
ith 17594 total binding samples. For the needs of the track, the
riginal trained models are kept and we experimented mainly
n its hyperparameters using as validation set the training set
rovided by the organizers. As a result of this experimentation,
e decided to keep a dense surface point grid, (parameter f

s set to 1, meaning no sub-sampling), while the ligandability
hreshold T is set to 0.9. Between the two architectures, the
omputational heavier 3D-ResNet, showing a performance boost
n the validation set, is selected. The experiments run on a

achine with a GeForce GTX1070 GPU and an Intel(R) Core i7-
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Fig. 6. A graphical representation of the strategy adopted in method M4. NanoShaper creates two SES molecular surfaces at probe radius 1.4 Å (standard average
ater molecule radius) and 3 Å. Pockets are defined as the enclosed cavities between the two meshes (central panel, light blue 3 Å triangulation vertices). Pocket
urfaces are constructed by filling the identified cavities with water spheres. For illustrative purposes, the three largest pocket detected (Top3 ranked) are represented
y the red, orange and yellow meshes, in decreasing order. Note that here the largest pocket is a tunnel.
700K CPU. The method is implemented in Python and uses the
ensorflow deep learning framework. The training takes 17 h on
he GPU. The inference time to extract the predicted binding sites
n the test set is 3.6 h, utilizing both GPU and CPU.

.4. M4: NS-Volume

NanoShaper (NS) is an efficient software for triangulating com-
lex manifold surfaces based on an ad-hoc ray-casting approach
nd the CGAL library [2]. NS can build molecular surfaces accord-
ng to several definitions: skin, blobby, and the SES (Connolly)
olecular surfaces. Geometrical patches are first calculated ana-

ytically and an accurate triangulation (Marching Cube algorithm)
s drawn from the analytical intersections of these patches with
rid-rays. In the process, the volume and surface area is also
alculated. In this SHREC track NS is first of all used to generate
he Solvent Excluded Surface (SES) of the dataset. In NanoShaper,
he SES is built according to alpha shapes theory which allows
he derivation of accurate analytical geometrical patches [5]. Even
f NS was mainly designed for the triangulation of molecular
urfaces, it offers also a pocket detection function. Pockets are
efined as the volumetric difference between the space regions
nclosed within the SESs of the protein obtained with two dif-
erent probe radii, 1.4 Å (water molecule effective radius) and 3
. The implementation is grid based by flagging those grid points
hich are simultaneously inside the 3 Å SES and outside the 1.4
SES. Once the grid points are identified, a filtering procedure

s adopted which preserves points which are (i) within 1.4 Å
rom all flagged point or (ii) within 1.4 Å from points fulfilling
i). Pockets are then defined as the unconnected components on
he grid after the filtering by applying a flood-fill procedure [3].
hen the pocket surface is constructed by building the molecular
urface of the union of water spheres (1.4 Å) centered on the
ocket grid points. Only pockets above a threshold of three water
olecules volume are returned. By default, the pockets returned
y NS do not follow any specific ordering. Here we implement
n top of NS a simple sorting of the pockets by volume, from the
27
largest to the smallest. The output provided is for each pocket a
surface mesh (OFF format), and a list of atoms contacted by the
pocket (a subset of the whole protein in PQR format). The overall
pipeline is illustrated in Fig. 6. This methods does not contain
any learning. It is here proposed for comparison against the
data-driven methods discussed above, showing the effectiveness
of simple volume ranking as a strategy for ligand binding site
recognition.

5.4.1. Computational aspects
Pocket detection speed depends on the size of the structure,

since it is based on the construction of two SES surfaces over the
whole protein. In general, NS has proven to be very efficient in
comparison to most molecular surface construction softwares [2].
Furthermore, NS can be speed-up with multi-threading (reported
10X speed up on 8-core machine with respect to single core) [2].
We write a custom python script which calls externally NS using
the “pocket” function, extracts information on the putative pock-
ets volume, and ranks them accordingly. As mentioned previ-
ously, we also extract information on the protein atoms contacted
by the pockets. This can be used to construct a labeled PQR with
the same format as the one given for training to be used in
this contest. The algorithm runs on a Intel(R) Core i7-1085H CPU
(2.7 GHz). On the test set using single core, the average execution
time per structure is of about 5 s and we measured a maximum
of about 16 s for the largest structure (PDB code 5ykw).

6. Comparative analysis

6.1. Ranking protocol

The performance of each method presented in Section 5 are
here quantitatively evaluated. As described in Section 4, a puta-
tive pocket, in the form of a list of labeled OFF vertices or PQR
atoms, is considered a correct match if its Ligand Coverage (LC)
score is above 50% and Pocket Coverage (PC) score above 20%.
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Fig. 7. An example of successfully predicted pockets on the structure with PDB code 3lcv. In the left column, the ground truth (LC = 100% and PC = 100%) of
he considered structure, in the right one, the output returned by the proposed methods (predicted sites are highlighted in orange). The output of the various
ethods is displayed in accordance with the representation they adopt (mesh surface in the top row, atom spheres in the bottom one). M1-Point Transformer:
ocket evaluation measures are LC = 100% and PC = 76.5%. M4-NS-Volume: Only the largest pocket is shown. Protein atoms contacted by the pocket mesh are used
or scoring, LC = 100% and PC = 88.6%. M2-GNN-Pocket: LC = 100% and PC = 36.2% (not visible: orange spheres on the opposite side). M3-DeepSurf: LC = 100%
nd PC = 87.4%.
Table 1
Results are expressed as a percentage representing the success rate normalized
over the total number of structure–ligand pairs. We also report on the average
LC and PC scores of successful pockets and average number of putative pockets
per structure generated by each method.
Method Top1 Top3 Top10 LC PC nPockets

M1 — Point Transformer 69.1 75.9 75.9 96.4 60.4 2.1
M2 — GNN-Pocket 53.4 54.6 55.4 93.7 47.5 1.9
M3 — DeepSurf 87.6 89.2 89.2 95.0 67.9 1.6
M4 — NS-Volume 60.6 80.3 87.6 87.9 73.4 11.6

Fpocketa 66.3 79.9 88.8 92.4 63.4 8.9

aStandard pocket detection method [12], for comparison purposes.

Results for a method are then summarized evaluating the effec-
tiveness of the returned ranking in terms of average successfully
predicted pockets. Similarly to what proposed in Refs. [19,51],
for a given structure with one or multiple known co-crystallized
ligands and a method returning a ranked list of putative pockets,
the ranking position is given by the number of preceding non-
matching pockets. The normalization is given by the number of
structure–ligand pairs. In this manner, we ensure that results are
comparable across structures with differing number of pockets
observed binding a ligand. For instance, if a structure has four
known binding sites and these are all matched by the first four
ranked pockets, this would be considered as 100% Top1.
28
6.2. Results

The performances on the test set of the different methods
are summarized in Table 1. In addition to evaluating the average
ranking in terms of Top1, Top3, and Top10 (maximum allowed
number of pockets returned) performance, we report on the
average LC and PC scores over successfully predicted pockets,
and average number of generated pockets per structure. Each line
refers to one of the methods analyzed. For sake of comparison, we
added an extra last line describing the results obtained by Fpocket
on the same dataset. Fpocket is a standard and well established
tool for pocket detection [12]. This method uses as input PDB
files (containing full chemical information) and so it would not
be appropriate to this SHREC track which focuses on geometric
rather than chemical features.

As a general comment, we notice that only M4 and Fpocket
return more than about 2 putative pockets per structure on
average. If on the one hand this could be appreciated by the user,
since it provides a more concise information, on the other hand,
it is potentially detrimental since it reduces the probability to
find more candidates and therefore binding pockets in a single
protein. The method which gives the best results, outperforming
significantly also Fpocket, is M3 — DeepSurf. Indeed, despite the
small number of putative pockets generated, these are extremely
well predicted, ranking 89% in Top3 (10% higher than Top3 of
Fpocket). It is interesting to note that overall, Fpocket and M4
— NS-volume score very similarly to M3 on Top10, showing the
outstanding capacity of M3 to pinpoint the observed binding
pockets within the top ranked, but eventually not surpassing
significantly the other methods on the total number of successful
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redictions generated. It is important to note, however, that the
rocedure adopted by M3 is partially beyond the scope of this
ork. Indeed, as described in Section 5.3, M3 — DeepSurf is
ased on 18 chemical features that are imported in a CNN. The
hemical features, in this case the atoms, can be deduced from
he information on the atomic radius provided in the anonymized
QR. Furthermore, the CNN was previously trained on a distinct
ataset (the training set here proposed is used only for hyper-
arameters optimization). This somehow reduces the possibility
o use M3 to really assess the power of purely geometrical meth-
ds in both generating and ranking the putative sites. Second,
ven assuming that the atomic radius can be considered on par
ith a label, any training should be restricted to the given training
et, in order to evaluate all the methods on the same footing.
inally, we are not aware about the degree of overlap between
ur test set and the large dataset used to originally train M3.
n any case, the results of M3 remain certainly impressive and
successful example of transfer learning. It is also interesting to
ote that M4 (i.e., NS-Volume) is very competitive even if it is not
ased on Machine Learning: the pockets are generated by a purely
gnostic geometrical method, and then simply ranked by volume.
1 is the only method based on OFF files. It is worth noting that

ts Top1 performance is extremely good, slightly outperforming
pocket. However, similarly to M2 and M3, the amount of suc-
essfully predicted pockets does not increase importantly when
onsidering the next ranked Top3. This behavior is a consequence
f the low number of returned pockets. M4 — NS-Volume and
pocket, which return on average about 10 pockets, show about
20% and a 14% increase in successful prediction when moving

rom Top1 to Top3 and Top10, respectively.
Focusing on the quality of the correctly detected pockets, we

bserve that all methods perform very well in term of Ligand
overage score, while a significantly lower Pocket Coverage score
s measured. A low average PC score indicates that a method
s prone to generate pockets which are larger than the bind-
ng ligand. To illustrate qualitatively the significance of PC, in
ig. 7 we show as an example a pocket correctly identified by
ll methods. It can be observed, that the binding pocket of M2 is
verestimating the actual binding region of the ligand. In general,
e observe that M2 generates pockets which are often larger than
he binding region and scattered into disconnected segments.
his type of behavior could be due to the ‘‘translation cost’’
equired for applying a voxel-based representation to a model
xpressed in the form of a PQR file, or to the lack of further
ost-processing. The systematic generation of excessively large
ockets in M2 is also statistically reflected in Table 1 by the lower
verage PC score with respect to the other methods.
As often observed in other pocket detection algorithms [6], the

roposed methods have more difficulty in identifying particularly
hallow binding sites. Indeed, methods completely relying on
eometry for the generation of putative pockets are optimized
o recognize cleft and cavities (which as a matter of fact are
ften found to contain binding ligands). Differently, due to their
nomalous geometric nature, shallow pockets are more difficulty
etrieved since they attain the role of binding site mainly for
heir chemical properties rather than their shape. As an example,
ig. 8 depicts a structure having a shallow binding site which
s not identified by any of the proposed methods. Methods as
1, M2 and M4 (as well as Fpocket) fail the detection because

hey do not adopt chemistry-related information. This limitation
s not fixed by adopting a learning-based approach, as for M1
nd M2, and is probably due to the fact that shallow sites are
are in the training set. However, from those ML methods such
s M3 — DeepSurf, which leverage also on chemical features to
orm putative sites, one would expect the ability to highlight

ocations of high protein–ligand chemical affinity, regardless of

29
Fig. 8. An example of a shallow binding site on the structure with PDB code
1nox, which cannot be correctly identified by any of the methods. The ligand is
also represented. In orange, the protein atom spheres of the pocket predicted
by M3 — DeepSurf (artificially enlarged for visualization purposes). This pocket
is not considered a match since too small (below the LC threshold).

the geometry. As depicted in Fig. 8, M3 — DeepSurf nevertheless
also seems to deteriorate when trying to identify shallow sites.
In this specific example, only a few (too little in order to form a
relevant pocket) number of atoms are identified in the region of
interest by DeepSurf. We think that this behavior is attributed to
the high selected value of the ligandability threshold T (T = 0.9)
which was tuned on the training set. Selecting a lower value
(e.g., T = 0.5) could make the algorithm more aggressive and
lead to the selection of more surface points and, consequently,
to the formation of larger binding sites. On the other hand, a
lower ligandability threshold could lead to a larger number of
false positives. As expected, different types of sites might require
different hyperparameter values.

7. Concluding remarks

In this paper, we provide a detailed analysis and evaluation of
four algorithms dealing with the problem of automatic detection
of binding sites on protein surfaces (aka ligandable pockets) given
a training database of positive examples (no negative labeled
data). The database was presented as a molecular surface mesh
(OFF format) or a PQR file where the vertices or, respectively, the
atom spheres are labeled according to whether they belong or not
to a known ligandable pocket.

The performance of each method is evaluated in terms of
two measures: the Ligand Coverage score (LC), and the Pocket
Coverage (PC) score. Together they express the ability of a binding
pocket predictor to find the smallest region which binds a ligand
on the protein molecular surface. Most of the proposed methods
showed very good performance, comparable to that of Fpocket, a
pocket detection tool widely used in the Computational Biology
community. In particular, method M3 showed an outstanding
performance. However, we observed that the information lever-
aged by M3 goes beyond that of pure geometry and the training
set is larger than the one provided to the participants to the
track. Interestingly, a method based solely on a purely geometric
technique and no learning, M4, confirms that simple volume
based scoring on geometrically identified pockets remains a very
valid approach. This type of ranking is actually adopted by several
standard geometry based pocket detection algorithms [52–56].
We observe that all methods perform worse on shallow binding

sites. This is a common limitation in pocket detection softwares
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ainly due to the fact that binding ligands are mostly found in
eep clefts and grooves. Finally, we observed that it is gener-
lly hard to perform high on Pocket Coverage. Given a high LC
core, a low PC score is related to a pocket which is exceed-
ngly large with respect to the ligand binding region. Therefore,
his suggests a margin for improvement in the direction of a
igher segmentation of the returned sites into separate smaller
ockets or sub-units (sub-pockets [9,17]). Given the effectiveness
f the ML approaches proposed, such a segmentation might be
ble to identify more precisely the exact binding site without
ompromising unreasonably the effectiveness of the ranking.
The problem proposed in this SHREC track is an instance

f a one-class discrimination task, since experiments can only
rovide positive examples. However, some of the methods dis-
ussed in this work, which are based on a learning process, turn
he problem into a two-class discrimination task by labeling as
egative the surface regions or atoms which do not belong to
xperimentally observed binding sites. This points to a critical
spect of this task, namely whether it can be effectively mapped
nto a standard ML problem, especially when employing DNN and
arge datasets (as done by M3). Further studies are needed to
ssess the precise nature of the boundary between the conceptual
ature of the problem and practical applications.
The benchmark, as well as the participants’ predictions that

riginated the results described in Section 6 and in the appen-
ices, are available at https://github.com/concept-lab/shrec22_
roteinLigandBenchmark.

nline software repositories

For the sake of replicability, for each of the four proposed
ethods we provide the link to the online software repository.

• M1 — Point Transformer is available at https://github.com/
aaron-h-code/Protein_SHREC2022/,

• M2 — GNN-Pocket is available at https://github.com/kiharal
ab/GNN_pocket,

• M3 — DeepSurf is available at https://github.com/stemylon
as/DeepSurf_SHREC22,

• M4— NS-Volume is available at https://github.com/concept-
lab/NS_pocket.
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