
SIGN LANGUAGE RECOGNITION BASED ON HAND AND BODY 
SKELETAL DATA 

Dimitrios Konstantinidis, Kosmas Dimitropoulos and Petros Daras 

ITI-CERTH, 6th km Harilaou-Thermi, 57001, Thessaloniki, Greece 

ABSTRACT 

Sign language recognition (SLR) is a challenging, but highly 
important research field for several computer vision systems that 
attempt to facilitate the communication among the deaf and 
hearing impaired people. In this work, we propose an accurate 
and robust deep learning-based methodology for sign language 
recognition from video sequences. Our novel method relies on 
hand and body skeletal features extracted from RGB videos and, 
therefore, it acquires highly discriminative for gesture recogni-
tion skeletal data without the need for any additional equipment, 
such as data gloves, that may restrict signer’s movements. Ex-
perimentation on a large publicly available sign language dataset 
reveals the superiority of our methodology with respect to other 
state of the art approaches relying solely on RGB features. 

Index Terms — Sign language, deep learning, linear dy-
namic system, skeletal data 

1. INTRODUCTION 

Sign language is a structured set of hand gestures with a specific 
meaning that is employed from hearing impaired people in order 
to communicate in everyday life. Although automated SLR is 
very important for such people, it remains a challenging and 
largely unexplored research area. This is due to the fact that sign 
language features thousands of signs, sometimes differing only 
by subtle changes in hand motion, shape or position and involv-
ing significant finger overlaps and occlusions. Combined also 
with differences in the signing style between individuals, SLR 
can be very challenging for current computer vision algorithms. 
Finally, the unavailability of large sign language datasets and the 
fact that sign language is not universal but presents significant 
variations based on the ethnicity of signers pose challenges to 
the development of an accurate and robust SLR system. 

Previous work on SLR can be categorized based on the data 
acquisition method, resulting in either direct measurement or 
vision-based approaches. Direct measurement methods rely on 
motion data acquired by data gloves, sensors or motion capturing 
systems [1][2]. The extracted motion data can provide accurate 
tracking of hands, fingers and other body parts, leading to the 
development of robust SLR methodologies, at the expense of 
costly setups and obtrusive systems as the movements of a signer 
are severely restricted from wearing the input devices. 

On the other hand, vision-based SLR approaches rely on the 
extraction of discriminative spatial and temporal features from 
RGB images. Although unobtrusive, such methodologies present 
inaccuracies due to hand and finger overlaps. Most vision-based 
SLR methods attempt to initially track and extract hand regions 
prior to their classification to gestures. Hand detection has been 
achieved by semantic segmentation and skin color detection as 
skin color is usually easy to distinguish [3][4]. However, due to 
the fact that other body parts (e.g., face and arms) can be mistak-
enly recognized as hands, recent hand detection methods rely 

also on face detection and subtraction and background subtrac-
tion to identify only the moving parts of a scene [5][6]. To 
achieve accurate and robust hand tracking, especially in cases of 
occlusions, previous methods employ filtering techniques, such 
as Kalman and particle filters [6][7]. 

As far as hand gesture classification is concerned, the suc-
cess of HMMs on several tasks, such as speech recognition has 
led to their use on SLR as well. Most SLR systems employ the 
original or modified versions of HMMs on the extracted hand 
motions and shapes in order to accurately detect and classify 
hand gestures [8][9][10]. Other successful SLR methodologies 
rely on distances between histograms of optical flow [5] and 
feature covariance matrices computed from the intensity of pix-
els [6], extracted from the detected hand regions. 

The superb performance of deep learning techniques on 
several computer vision tasks has led to their adoption for SLR 
as well. More specifically, Koller et al. proposed a hybrid SLR 
system based on a convolutional neural network (CNN) and a 
HMM, where the CNN was employed in order to identify the 
hand shape and its probabilistic output was then fed to a HMM 
in order to guide its inference [11]. Later on, the same authors 
improved their SLR methodology by additionally employing 
bidirectional recurrent neural networks, in the form of Long 
Short Term Memory (LSTM) units [12]. 

In this work, we propose a novel methodology that bridges 
the gap between direct measurement and vision-based approach-
es thus taking advantage of both methods and overcoming their 
limitations. More specifically, we propose a novel SLR system 
that is based on the processing of video sequences in order to 
extract accurate body and hand skeletal data that will then be 
employed for robust SLR. The initial processing of the video 
sequences for the extraction of skeletal data is based on the 
works of [13][14] and their further analysis and classification is 
based on a proposed robust deep learning architecture. In this 
way, we propose a holistic SLR system that is unobtrusive as it 
is based only on video sequences without the need for sensors 
that limit the movements of signers. Moreover, our proposed 
system achieves accurate and robust SLR results since it relies 
on highly discriminative skeletal data. 

The rest of the paper is organized as follows: Section 2 pre-
sents the proposed vision-based SLR methodology, while Sec-
tion 3 evaluates the proposed method on a public dataset and 
compares it with a HMM-based SLR method. Finally, Section 4 
summarizes the work of this paper by drawing conclusions and 
presents our plans for future work. 

2. METHODOLOGY 

The proposed SLR system constitutes the first attempt to merge 
a vision-based approach (i.e., processing of video sequences) 
with the accurate extraction of skeletal data without employing 
data gloves or other sensors that limit the movements of a signer. 
The architecture of the proposed SLR system is presented in 
Figure 1 and is extensively analyzed below. 



 

 

Figure 2: Body and right hand skeleton joints employed by our proposed 
SLR system. The red numbers correspond to the local coordinate system 
chosen for invariance to human position on image. Examples of how 
joint-line distances are computed are also presented. 

The extraction of body and hand skeletal data from videos 
is based on the works of [13][14]. More specifically, a pre-
trained on ImageNet VGG-19 network [15] up to conv4_4 is 
employed as feature extractor for hand skeleton detection, while 
the first 10 layers of the same network are employed for body 
skeleton detection. The outputs of the body and hand skeleton 
detection networks are 18 body and 21 hand 2D joints, accom-
panied by confidence scores. As the hand skeleton detector re-
quires a bounding box around the hand, the wrist and elbow 
positions, computed from the body skeleton detector are em-
ployed in order to get an approximate position of the hand loca-
tion and generate a bounding box. 

In this work, we employ 12 out of the 18 extracted body 
skeleton joints as shown in Figure 2. This is due to the fact that 
i) the signers of a sign language dataset are usually sited and thus 
the leg skeleton joints are not visible and ii) the leg joints do not 
provide any valuable information for SLR tasks. Although the 
employed body skeleton detector produces coordinates for non-
visible joints as well, their confidence score is low and thus they 
are deemed inappropriate by our methodology for robust classi-
fication. On the other hand, all hand joints are considered alt-
hough some of these joints may be occluded by other parts of the 
hand and thus their confidence scores are low. 

Another problem that has to be dealt with in the context of 
sign classification using the LSA64 dataset [10] is the fact that 
some of the gesture classes are signed with the right hand, while 
others are signed with both hands. To overcome this problem, 
we consider only the right hand joints for our proposed SLR 
system. Finally, there are also instances, where the hand skeleton 

detector is not able to recover the joints of the right hand in some 
of the frames of a video sequence. In such occasions, we employ 
the hand joint coordinates of the previous frames in order to fill 
the missing information.  

Before introducing the skeletal features to the proposed 
skeleton classification network, a preprocessing is required. 
More specifically, all 2D joint coordinates are initially trans-
formed from the image to a local coordinate system by placing 
the neck of the body skeleton and wrist of the hand skeleton at 
the origin. These origins are depicted with red color in Figure 2. 
The purpose of this preprocessing is to make skeleton data invar-
iant to the absolute location of the human in the scene. 

The skeleton classification network of the proposed SLR 
system is based on two types of spatial features and a type of 
temporal features. The first type of spatial features is the abso-
lute right hand and body joint coordinates. The second type of 
spatial features that are employed in this work is the joint-line 
distances [16]. Joint-line distances model the distances from 
each joint to its projections on the lines formed by every other 
skeleton joint pair (see examples in Figure 2). Given three dif-
ferent joints of a skeleton 𝐽 , 𝐽 , 𝐽  ∈ 𝑅 , the distance 𝑑(𝐽 , 𝐽 →
𝐽 ) between joint 𝐽 , and the line formed by 𝐽  and 𝐽 , is given by 
employing Heron's formula as follows: 

 
𝑑(𝐽 , 𝐽 → 𝐽 )

=  
2 𝑠 𝑠 − 𝑑(𝐽 , 𝐽 ) (𝑠 − 𝑑(𝐽 , 𝐽 ))(𝑠 − 𝑑(𝐽 , 𝐽 ))

𝑑(𝐽 , 𝐽 )
         (1) 

 
where 𝑑(∗,∗) denotes the distance between two 2D joint coordi-
nates and 𝑠 = 0.5 ∗ (𝑑(𝐽 , 𝐽 ) + 𝑑(𝐽 , 𝐽 ) + 𝑑(𝐽 , 𝐽 )). The moti-
vation behind the selection of the joint-line distances lies in the 
fact that these features constitute an alternative spatial skeleton 
representation that models the relationship between joints. As a 
result, joint-line distances can complement absolute joint coordi-
nates, forming a more descriptive spatial representation that can 
significantly improve SLR results. Body and hand joint coordi-
nates and joint-line distances form a four-stream deep neural 
network that consists of stacked LSTM layers, having as a task 
to produce descriptive temporal information from the spatial 
features. 

Other than the spatial features, linear dynamical system 
(LDS) histograms [17] are employed. A LDS histogram consti-
tutes a temporal representation with the ability to capture dy-
namics of a multi-dimensional signal, as is the case with the joint 
coordinates and joint-line distances. A LDS histogram is com-
puted by projecting sub-sequences of a signal as points to a high-
dimensional space, called Grassmanian manifold [18]. In this 
work, we employ a spatial pyramid and compute LDS histo-

Figure 1: Proposed SLR system. 



grams in each pyramid level before concatenating them in a 
large LDS descriptor. These descriptors are further processed 
with fully connected (FC) layers in order to derive more discrim-
inative features. The resulting eight streams are finally fed to 
softmax layers so as each stream produces its own probabilities 
of a given video sequence to belong to a certain class. These 
probabilities are averaged and a new probability per class is 
produced taking into consideration all streams of the proposed 
skeleton classification network. 

Finally, a meta-learner (see dotted outline in Figure 1) is 
proposed to further improve the system’s accuracy. The purpose 
of the meta-learner is to combine the features of the eight 
streams by weighing them differently based on how significant 
their contributions are for the given SLR task. Furthermore, the 
meta-learner combines the features in order to produce even 
more discriminative ones. In this way, we enhance the learning 
procedure and improve the discrimination and generalization 
ability of the proposed SLR system. The probabilities per class 
computed by the meta-learner are fused (i.e., averaged) with the 
average class probabilities of the rest of the skeleton classifica-
tion network, leading to the selection of the most probable class 
for a given video sequence. 

3. EXPERIMENTAL EVALUATION 

In this section, we initially present the tested dataset and the 
experimental setup before we describe the architectural details of 
the proposed SLR system. Then, we compare our proposed sys-
tem with the methodology described in [19]. Finally, we analyze 
and assess the contributions of the various employed features to 
the performance of the proposed SLR system. 

3.1 Dataset description and experimental setup 

The LSA64 dataset [10] is a large Argentinian sign language 
dataset that consists of 10 subjects, executing 5 repetitions of a 
total of 64 different and commonly used types of signs. As a 
result, the LSA64 dataset consists of 3200 videos of different 
length (i.e., number of frames). In order to be employed in our 
proposed SLR system, all video sequences are processed so that 
they are composed of 48 frames each. This is achieved by em-
ploying a spline interpolation technique among the given frames 
of a video sequence. The experimental setup is based on [19]. 
More specifically, the dataset is split randomly in a training set 
consisting of 80% of the samples and a test set consisting of the 
remaining 20% of the samples. This procedure is repeated 5 
times, where in each iteration, a different split of the dataset is 
performed. The reported results are based on the average and 
standard deviation of the results of all iterations. 

3.2 Hyper-parameters of proposed SLR system 

The optimization of the hyper-parameters that affect the perfor-
mance of the proposed SLR system is performed after experi-
mentation on the LSA64 dataset. These hyper-parameters define 
the size and number of LSTM and FC layers, dropout percent-
age, batch size and learning rate. More specifically, one- or two-
layer LSTM and FC layers are considered, consisting of 128, 
256, 512 or 1024 neurons, while the dropout percentage is in the 
range [0.0-0.5]. The streams fed with the skeleton joint coordi-
nates employ two-layer LSTMs, while the streams fed with the 
skeleton joint-line distances employ one-layer LSTMs, all with 
optimized number of neurons and dropout percentage. On the 
other hand, the FC layers are all fixed with two layers consisting 
of 512 and 128 neurons respectively, while the FC layer of the 
meta-learner consists of 128 neurons. Finally, the network is 

implemented in Keras-Tensorflow framework and trained using 
the Adam optimizer with batch size of 32 and learning rate equal 
to 0.0001. 

Table 1: Experimental evaluation on the LSA64 dataset. 

Method Accuracy(Mean ± Std) 
ALL-BF-SVM [19] 

ALL (sequence agnostic) [19] 
ALL-HMM [19] 

95.08  ±  0.69 
97.44  ±  0.59 
95.92  ±  0.95 

Body features 
Hand features 

Deep Network without meta-learner 
Proposed Deep Network 

93.91  ±  1.24 
91.64  ±  1.01 
97.16  ±  0.57 
98.09  ±  0.59 

 

 

 

Figure 3: Extracted hand and body joints from video sequences of the 
LSA64 dataset. 

3.3 Results 

The evaluation of the various types of features in the perfor-
mance of our proposed SLR system on the LSA64 dataset, along 
with a comparison with the SLR methods in [19] is presented on 
Table 1. 

In [19], the authors proposed a SLR system based on the 
output of two classifiers, one for each hand. The classifier for 
each hand receives as input a sequence of cropped hand regions 
and normalized hand positions and employs three sub-classifiers 
that each use position, movement and hand-shape information. 
The outputs of these sub-classifiers are merged to a final proba-
bility, stating in which class a given hand gesture sequence be-
longs to. The authors developed their sub-classifiers in a way to 
be sequence agnostic, meaning that they do not rely much on the 
correct sequence of the hand gestures and they called their meth-
od ALL. Furthermore, they employed two more variants of their 
method, one of which employs HMMs with Gaussian Mixture 
Models output probabilities (ALL-HMM) and the other trans-
forms their features to binary ones and then employs one-versus-
all multi-class Support Vector Machines (ALL-BF-SVM). 

From Table 1, a few conclusions can be drawn. Firstly, the 
body features constitute a slightly better representation than the 
hand features for sign language recognition since they achieve a 
2.27% increase in sign language recognition on the LSA64 da-
taset. This is attributed to the fact that the body joints are more 
reliably and robustly detected than the hand joints. Accurate 
hand joint detection suffers from occlusions and overlaps be-
tween the fingers and as a result, no detector can reliably infer 
the locations of non-visible joints. This can also be observed by 
the low confidence scores the employed hand skeleton detector 
produces. 

However, the employment of both hand and body skeletal 
features is beneficial for the SLR task. Hand skeletal joints con-
tain valuable knowledge that can complement the information 
body skeletal joints provide and therefore, their combined use 
gives a boost to the performance of our proposed SLR deep net-



work as shown by the increase of 3.25% in the accuracy 
achieved on LSA64 dataset. It is also worth mentioning that 
although our proposed SLR system does not employ any infor-
mation from the left hand, our methodology manages to success-
fully classify both one-handed and two-handed signs of the 
LSA64 dataset, demonstrating the discrimination power of the 
employed features. 

Moreover, the use of a meta-learner is beneficial to the per-
formance of our proposed SLR methodology. This can be at-
tributed to the construction of highly discriminative features by 
the employed meta-learner based on the corresponding features 
each data stream produces. In this way, the meta-learner exploits 
the derived meta-knowledge, enhances the learning procedure 
and improves the discrimination and generalization ability of the 
proposed SLR system. Finally, our proposed methodology out-
performs all variants of the SLR method of [19] by at least 
0.65% no matter what types of classifiers or features they em-
ployed. Finally, examples of the detected hand and body joints 
that are extracted from the video sequences of the LSA64 dataset 
and are employed for the classification of sign language gestures 
are shown in Figure 3. 

4. CONCLUSIONS AND FUTURE WORK 

Previous works on sign language recognition were based either 
on direct measurement of skeletal data from obtrusive sensors 
and data gloves or inaccurate processing of video sequences. 
This paper presents a novel SLR system that attempts to over-
come the limitations of previous methods by proposing the ex-
traction and processing of hand and body skeletal data from 
video sequences. The experimentation on LSA64 dataset shows 
that our SLR system outperforms other vision-based SLR ap-
proaches, despite difficulties in extracting accurate skeletal data 
due to occlusions. As a future work, we plan to test our novel 
SLR system in additional sign language datasets and study the 
contribution of image and optical flow features in the task of 
sign language recognition.  
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