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Abstract— In this paper, a framework for shape-based similarity search of 3D molecular structures is presented. 

The proposed framework exploits simultaneously the discriminative capabilities of a global, a local and a hybrid 

local-global shape feature to produce a geometric descriptor that achieves higher retrieval accuracy than each 

feature does separately. Global and hybrid features are extracted using pairwise computations of diffusion distances 

between the points of the molecular surface, while the local feature is based on accumulating pairwise relations 

among oriented surface points into local histograms. The local features are integrated into a global descriptor vector 

using the bag-of-features approach. Due to the intrinsic property of its constituting shape features to be invariant to 

articulations of the 3D objects, the framework is appropriate for similarity search of flexible 3D molecules, while at 

the same time it is also accurate in retrieving rigid 3D molecules. The proposed framework is evaluated in flexible 

and rigid shape matching of 3D protein structures as well as in shape-based virtual screening of large ligand 

databases with quite promising results.  

Index Terms — Bioinformatics (genome or protein) databases; flexible 3D molecular shape comparison; virtual 

screening. 

——————————   Φ   —————————— 

1 INTRODUCTION 

HE THREE DIMENSIONAL STRUCTURE of a biological molecule is very important in order to understand its 

function and biological action. Comparison of the 3D molecular structures is useful in a variety of applica-

tions such as protein function prediction, computer aided molecular design, rational drug design and protein 

docking. Following the similarity property principle [1], according to which similar structures are likely to have 

similar properties, several approaches for molecular structure comparison have been proposed, using differ-

ent representations of the molecules. As an example, in rational drug design, the process of virtual screening is 

usually applied, where given a target molecule, a search is performed in a large database for compounds that 

are most similar to the target. Since these compound databases range from thousands to millions of struc-

tures, an ideal method should provide accurate and at the same time rapid similarity matching. Among the 

various existing structural comparison methods [3] [52], those that are based on comparison of structures by 

their mainchain orientation [53] or the spatial arrangement of secondary structure [5] are quite slow, thus, 

similarity search in large molecular databases can be time-consuming. Therefore, in order to accelerate the 

search time, methods of 3D shape matching have been proposed in the literature.   
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1.1 Related Work  

Techniques for similarity matching of molecular structures can be classified into different categories based on 

the molecular representation [2]. These representations may include backbone Ca positions [3], distance maps 

[4], secondary structure elements [5] and backbone torsion angles [6]. The technique/algorithm that is used 

for comparison highly depends on the chosen representation. As an example, for backbone representations, a 

common technique is dynamic programming [3]; spatial arrangements are used with secondary structure 

elements [5], while Monte Carlo algorithms are used with distance maps [4]. A broad category of techniques 

for Molecular Shape Comparison (MSC) rely on finding an optimal superposition of the molecules that are 

compared (superposition methods) [11]. Superposition is also applied to protein structural alignment to 

compare a pair of structures, where the alignment between equivalent residues is not given a priori 

[4][64][65][66][67][68]. Although superposition methods are particularly effective (in terms of identifying sim-

ilarities between molecular structures), they lack efficiency; they are extremely computationally expensive, 

which makes search in large molecular databases a time consuming task. As the need for rapid and accurate 

comparison is becoming even more critical, due to the increasing size of the databases, descriptor-based meth-

ods have been introduced [11][28]. These extract low level features (descriptors) that capture the spatial pro-

file of the molecule as a multidimensional feature vector. In this case, similarity matching is reduced to de-

scriptor comparison using a common distance measure, which obviates the need for superposition. Since the 

work presented in this paper belongs to the category of descriptor-based techniques, a more detailed state-of-

the-art analysis of these methods is provided in the sequel. 

In shape-based approaches, the molecule is treated as a three-dimensional (3D) object, on which an appro-

priate algorithm is applied to extract low-level descriptors that uniquely characterize its shape. A common 

representation that is extensively used is the molecular surface [7]. Considering the molecular surface as in-

put, several features can be generated, such as Spin Images [8] or Shape Histograms [9]. Spin Images are local 

2D descriptions of the surface based on a reference frame that is defined by the associated surface points. 

Shape Histograms, on the other hand, exploit global geometric properties of the molecule captured in the 

form of a probability distribution sampled from a shape function (e.g. angles, distances, areas). In [10], the 3D 

molecular surface is given as input and 2D views of the surface are taken from 100 uniformly sampled view-

points. Comparison is performed by multi-view matching using 2D Zernike moments and Fourier de-

scriptors for each 2D view. Multi-view representation has been proven quite effective for shape matching of 

3D objects [59]; however, for most multi-view-based methods, the optimal performance is achieved when the 
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database objects have symmetries, i.e. in retrieval of generic objects [54]. In the case of molecular shapes, 

these symmetries are not present. This obstacle could be overcome by using features oblivious to symmetries, 

such as integrating local features into bag-of-words to represent each view [60]; however, such approaches 

have not been reported so far to address the MSC problem.  

Apart from the molecular surface, other representations are also possible. The method presented in 

[11][12] describes the shape of a molecule through its set of interatomic distances, which is encoded as a ge-

ometrical descriptor vector. The method achieves very fast comparison times and is appropriate for virtual 

screening problems. Another shape representation for molecular structure comparison is alpha shapes [71][72], 

which provide a coarser representation of the Connolly surface. Due to their high computational complexity, 

molecular structure comparison algorithms are usually parallelized [73][74] in order to distribute the pro-

cessing task into several processors, thus, speed-up the matching process. Finally, there is also a category of 

more recent methods with the ability to identify subtle differences among very similar proteins, which assists 

in finding small structural variations that create differences in binding specificity [75][76][77]. The latter is 

particularly interesting, taking into account the fact that the variation of just a few residues can be enough to 

alter activity or binding specificity. 

An interesting category of shape-based approaches comprises methods that extract moments from the 3D 

object. These have been successfully applied in pattern recognition problems [13]. The moment-based repre-

sentations result in compact descriptor vectors with high discriminative power. Examples of moments are 

based on the theory of orthogonal polynomials, such as 2D/3D Zernike moments and Legendre moments 

[14]. These descriptors allow also reconstruction of the object from its moments [15]. The method in [16] takes 

as input the volume of the 3D molecular structure producing a new domain of concentric spheres. In this 

domain, 2D Polar-Fourier coefficients and 2D Krawtchouk moments are applied, resulting in a completely 

rotation-invariant descriptor vector. Spherical Harmonics have been widely used in molecular similarity 

comparison problems such as virtual screening [17], protein structure representation and comparison [18] 

and molecular docking [19][20]. Spherical Harmonics have the advantage of allowing the surface information 

to be encoded in a compact form as an orthonormal 1D vector of real numbers allowing fast comparison. 

Their main disadvantages are: a) they represent only star-shape surfaces; and b) the handling of alignment 

problems is associated with the fast comparison of objects [21]. Recently, 3D Zernike descriptors (3DZD) have 

been introduced as a representation of the protein surface shape [22]. These are based on a series expansion 

of a given 3D function. 3DZDs are rotation invariant, with the protein structures not necessarily being 
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aligned to perform the molecular shape comparison. Another advantage of 3DZDs is that they allow other 

characteristics of a protein surface, such as electrostatic potentials, to be incorporated into the descriptor vec-

tor [22]. 3DZDs have been used in problems of protein structure retrieval [2], protein-protein docking [23] 

and virtual screening [24] with quite satisfactory results. 

In all methods for molecular shape comparison described above, the 3D molecules are treated as rigid ob-

jects. A drawback of these approaches is that they are not robust to shape deformations of flexible molecules. 

Since many molecules are flexible and this flexibility is part of their function, it should by no means be un-

derestimated. To address such problems, methods for non-rigid shape matching should be utilized. Such 

methods have been introduced to address problems that include articulation of the 3D objects (e.g. different 

human or animal poses in generic 3D object retrieval), as rigid shape descriptors have been proven inappro-

priate [30][61]. The two main categories of non-rigid approaches are: a) global-shape-based and b) local-

shape-based methods. The former [25][26][27] usually transform the Euclidean space or Euclidean metrics 

[40] to a metric space where the pairwise distances between points of the 3D object surface are invariant to 

deformations of the 3D object. These distances are usually accumulated into a histogram, which provides the 

final descriptor vector. Examples include canonical forms [31], geodesic distances (GD) [32], inner distances 

(ID) [27] or diffusion distances (DD) [28]. The difference of DD comparing to GD and ID is that DD is com-

puted as the average length of paths connecting two points, while GD and ID represent the length of the 

shortest path. This makes DD more robust to topological changes and, thus, it has been proven more efficient 

to flexible molecular shape comparison problems. In [28], the Diffusion Distance Shape Descriptor (DDSD) is 

a histogram of the diffusion distances between all sample point pairs on the molecular surface. Experiments 

in a database of flexible molecules show that DDSD outperforms similar approaches. 

Local-shape-based methods sample the surface and extract descriptors for each of the sampled local re-

gions. Then, a codebook is created and a bag-of-features method is applied to generate a global shape de-

scriptor [33][34][35]. A main challenge in these problems is the selection of the most appropriate local shape 

descriptor [61]. Apart from the discriminative ability, the descriptors should fulfil additional criteria such as 

fast descriptor extraction, compactness and rotation invariance. Several descriptors have been proposed that 

fulfil the above selection criteria. The Shape Impact Descriptor (SID) was introduced in [69] as a shape simi-

larity measure for 3D objects and it is based on the idea that objects of similar shape will have similar sur-

rounding fields created by the insertion of the 3D object in the space. The Local Spectral Descriptor has been 

proposed in [33] for retrieval of non-rigid 3D meshes and it is based on the extraction of geometric de-
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scriptors, that is eigenvectors of the Laplace-Beltrami operator (LBO), from a surface patch centered around a 

sample point on the mesh. The Surflet-Pair-Relation Histograms method was introduced in [37] for global 

shape representation; furthermore this method was exploited in [63] as a local feature for non-rigid 3D object 

retrieval. It computes intrinsic geometric properties (azimuthal angle, cosine of polar angle, direction and 

distance) between pairs of oriented surface points in a 3D surface. Another approach, which was introduced 

in [29] for fast screening of proteins, is based on extraction of local patches from the protein surface and com-

putation of a geometric fingerprint (distribution of curvatures) for each patch. It exploits local surface similar-

ities and achieves rapid shape comparisons. 

Although local-shape-based methods are appropriate for non-rigid shape matching problems, most of 

them have inferior performance in rigid shape retrieval over rigid methods [35]. In fact, only few methods 

achieve high performance in both rigid and non-rigid 3D objects [60][62]. It has been recently proven that 

combining multiple shape descriptors can significantly improve the performance of rigid 3D shape retrieval 

[36]. In [35], a combination of global and local features is proposed, where the Local Distance Feature (LDF) 

enhances the local descriptors extracted in 3D meshes by adding spatial context. LDF combines local charac-

teristics – as it is computed on uniformly-sampled keypoints of the 3D surface – with global characteristics – 

as it takes into account the set of diffusion-like distances from each keypoint to the surface points of the entire 

mesh. These diffusion-like distances are computed by using a Manifold Ranking algorithm [41]. Following 

the same concept, a framework that combines multiple shape descriptors to address both rigid and flexible 

molecular shape matching problems is proposed in this paper. 

1.2 Method Overview and Contributions 

In Fig. 1, the block diagram of the proposed method is depicted. The crystal structure of the molecule is given 

as input (e.g. PDB file) and its Solvent Excluded Surface (SESs) is generated in the form of a triangulated 

mesh. Then, a mesh simplification step is performed on SES, resulting in two sets of points: a set of 
SN  

ori-

ented points and a set of 
KN  

keypoints (
SK NN < ) that provide a coarser representation of the 3D molecule. 

In the descriptor extraction step, two different descriptor vectors are proposed in this work: the Bag of Aug-

mented Local Descriptor (BoALD) and the Modal Representation of the Diffusion-Distance Matrix (DDMR de-

scriptor). These descriptor vectors are combined into a common distance measure in order to calculate the 

dissimilarity between the query molecule and the molecules of a database.  
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Fig. 1. Block diagram of the proposed method 
 
The main contribution of the proposed work is that it successfully addresses the problem of shape com-

parison of flexible 3D molecules by combining a global, a local and a hybrid local-global feature into a unified de-

scriptor. Such an approach has not been reported so far to the best of the authors’ knowledge. Although nu-

merous non-rigid shape matching approaches have been introduced [56][57], which deal effectively with de-

formations of articulated objects, it cannot be inferred that they are also applicable to flexible molecules [26]. 

The peculiarities of the molecular shape as well as the complexity of molecular shape deformations, as op-

posed to deformations of articulated objects (e.g. humans, animals), indicate the need for a method that cap-

tures the molecular conformations in a more efficient manner. The method should be highly discriminative 

and at the same time able to handle shape deformation of molecules with topological changes. Based on the 

fact that combination of different shape features produces more discriminative descriptors [36][58], in our 

case, we exploited the properties from a diversity of features, such as a global, a local and a hybrid local-

global feature to produce an effective descriptor. Additionally, the global shape feature that has been inte-

grated in our framework is based on the diffusion distance, which is able to capture topological changes in 

molecular shapes [28]. The proposed unified framework demonstrates superior performance to existing 

methods for shape comparison of flexible molecules. Experiments performed in a benchmark Database of 

Macromolecular Movements (MolMovDB) [38] show that our method clearly outperforms other state-of-the-

art approaches. At the same time, our method achieves high accuracy in retrieval of rigid molecules as well. 

More specifically, it outperforms existing molecular shape matching approaches in three datasets. Thus, the 

proposed framework is applicable to both rigid-body and flexible molecular shape comparison problems. 

Additional contributions of our work include: 
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Introduction of an accurate global shape descriptor, by improving existing work on Diffusion-Distance-based de-

scriptor: the work of [28] based on Diffusion Distances is further extended in this paper. Instead of computing 

histograms of diffusion distances between all sample point pairs on the molecular surface, we provide a new 

representation by performing singular value decomposition (SVD) on the matrix that summarizes all point-

to-point diffusion distances on the molecular mesh. The proposed Modal Representation of the Diffusion 

Distance Matrix achieves better results in similarity matching of flexible molecules, than the method in [28]. 

Evaluation of several state-of-the-art local shape descriptors in order to select the local feature that best fits to our 

framework: the selection criteria include computational efficiency in descriptor extraction, compactness of the 

descriptor, rotation-invariance and improved discrimination capacity in the flexible molecular shape compar-

ison problem. Eventually, a shape descriptor, which is based on Surflet-Pair relations [37] and fulfils the 

above criteria, has been selected.  

Finally, it is worth mentioning that the resulting shape descriptors constitute a compact representation of 

the molecular shape. Since it is a pure shape-based method (i.e. the descriptors do not rely on physicochemi-

cal information), it is applicable to both macromolecules (e.g. proteins) and small ligands. Thus, throughout 

the description of the approach, in Sections 2, 3 and 4, the term “molecule” will be used referring to both pro-

teins and ligands. A distinction will be made in Experiments section, though, since the first two datasets refer 

to proteins and other macromolecules and the last two datasets refer to small ligands. 

The rest of the paper is organized as follows: in Section 2, the pre-processing procedure is described, Sec-

tion 3 analyses the computation of modal representation based on diffusion distances (DDMR) and Section 4 

the computation of the Augmented Local Descriptor (ALD). The combined matching scheme that includes 

the global, the local and the hybrid feature is described in Section 5. Experiments performed in four bench-

mark datasets are reported in Section 6. Finally, conclusions are drawn in Section 7. 

2 PREPROCESSING  

The preprocessing procedure consists of two steps: the first step involves computation of the Solvent Exclud-

ed Surface (SESs) of the molecule, while, during the second step, the SES is remeshed so that each molecule is 

represented by the same number of oriented points. These preprocessing steps are required for descriptor 

extraction. Input to the system is the crystal structure of the molecule (e.g. in PDB file format), which repre-

sents its atoms in the 3-dimensional space (x, y, z coordinates). In order to generate a SES, the Maximal Speed 

Molecular Surface (MSMS) [51] software has been utilized, which is based on rolling a probe sphere (of size 

equal to the size of the solvent molecule) over the exposed contact surface of each atom. 
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a) b) 

Fig. 2. a) the SES of a protein that consists of 25144 vertices and 50278 faces; b) the surface that is pro-
duced after the remeshing step, consisting of NS = 3000 vertices and 5996 faces. The dark blue spheres 
depict the NK =500 sub-sampled points, while the green lines depict the normals ni. 

 
The output mesh is then used for the extraction of global and local shape descriptors. In order to apply the 

descriptor extraction algorithms, all molecules of the dataset should have the same number of mesh vertices. 

Since by using the MSMS software we cannot determine the exact number of the extracted vertices, a remesh-

ing step follows to produce a mesh with the exact number of vertices
SN . For this remeshing, the Computa-

tional Geometry Algorithms Library (CGAL1) has been used. Let
ip be the ith vertex, 

SNi ,,1 K= . For each 

ip its normal vector 
in is computed resulting in a set of 

SN oriented points ),( ii np . These oriented points 

are further sub-sampled to generate a new set of 
KN  keypoints 

iq , 
KNi ,,1 K= , where 

SK NN < , that 

provide a coarser representation of the 3D molecule. Sub-sampling is performed using quasi-random se-

quence, which is a deterministic sequence that produces sample points more uniformly distributed than a 

pseudo-random sequence. In our case the Sobol sequence has been utilized [39]. In Fig. 2a, the SES of a pro-

tein is depicted. This mesh consists of 25144 vertices and 50278 faces. The new surface after the remeshing 

step consists of 3000 vertices and 5996 faces and it is shown in Fig. 2b. The normals 
in  of the 

SN oriented 

points are given in green lines, while the dark blue spheres depict the centers of the 
KN sub-sampled points.  

3 A GLOBAL SHAPE DESCRIPTOR BASED ON DIFFUSION DISTANCES 

The computation of DD over the molecular surface is performed in three main steps: (a) calculation of the 

Markov probability matrix; (b) Singular Value Decomposition (SVD) of the matrix to generate the diffusion 

________ 

1 http://www.cgal.org/ 
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map space; and (c) computation of the diffusion distances. 

Let 
ip  

be the set of 
SN  vertices. Let ( )⋅K  

be a kernel function with bandwidth h . The Gaussian kernel 

( ) ( )22/exp, hK jiji pppp −−=  is one of the most commonly used, where the bandwidth h  
controls the 

local scale of each data point's neighborhood and 
2

ji pp −  is the Euclidean distance between surface points 

i
 
and j . Then, the diffusion matrix L  with elements ( )

jiij KL pp ,=  is normalized as 
11 −−= LDDM  by 

the degree matrix D with 
ijiij LD ∑= . The normalized diffusion matrix M is a stochastic matrix with all 

row sums equal to one, and according to [42] it can be interpreted as a random walk on a graph, where the 

vertices of the graph are the surface points 
SNi ,,1 K=  and the weights of the ji,  edges correspond to 

ijM  values. Thus, 
ijM  denotes the ( )jip |,1  transition probability from the surface point j  to point i  in 

one time step ( 1=t ). For any finite time t  the Markov probability matrix 
t

M
 
with elements 

t

ijM  is comput-

ed as ( )jitpM
t

ij |,= , expressing the probability distribution of reaching surface point i , given a starting 

point j  at time 0=t . Thus, the transition probability is given by ( ) t

jjitp Me=|, , where 
je  is a row vec-

tor of zeros with a single entry equal to one at the j-th coordinate. Let the SVD of matrix 
t

M
 

be 

Tt BΣAM   = , where ( )kdiag σσσ ,,, 10 K=Σ  and 010 ≥≥≥≥ kσσσ K
 are the 1+k  singular values of 

t
M , [ ]kaaaA ,,, 10 K=  and [ ]kbbbB ,,, 10 K=  with ( ) ( ) ( ){ }Siiii Naaa ,,2,1 K=a  and 

( ) ( ) ( ){ }Siiii Nbbb ,,2,1 K=b  are the left and right singular vectors, respectively, and 
0a  and 

0b  are the first 

left and right eigenvectors, corresponding to the first ( )10 =σ  eigenvalue. Note that following [42], the first 

eigenvalue and the respective eigenvectors are excluded from the diffusion process and are used only for 

normalization purposes. The diffusion distance between surface points ji,  at time t  is calculated as:  

 ( ) ( ) ( ) 22
, jijiD ttt ΨΨ −=  (1) 

where ( ) ( ) ( ) ( )( )ibibibi k

t

k

tt

t ⋅⋅⋅= σσσ ,,, 2211 KΨ  is the mapping of the i-th surface point from the original ker-

nel space (formed by the kernel function ( )⋅K ) to the diffusion map space at time t . 

3.1 Modal Representation of Diffusion Distance 

Given the computation of diffusion distances between the molecular surface points, the next step is to exploit 

this feature for the computation of a global shape descriptor. A common technique that has been already fol-
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lowed in similar works [28] is to accumulate these pairwise distances into a histogram. In this paper, we pro-

pose an alternative approach based on a modal representation. The idea is to apply Singular Value Decompo-

sition to the Diffusion Distance Matrix ( ){ }jiDt ,2=DDM , where 
SNji ,,1, K=  . In this way, DDM is sep-

arated into a matrix that contains intrinsic shape information and a matrix with information about the corre-

sponding points. The SVD of DDM  yields: 

 
T

  VLUDDM =  (2) 

where the singular value matrix ),,,( 21 ndiag λλλ K=L , contains the intrinsic information about geometry, 

and matrices U , V  contain the information about correspondences between points. The first n
 
singular val-

ues { }nλλλ ,,, 21 K  constitute the Modal Representation of Diffusion Distance (DDMR) descriptor 
DDMR

D  of the 

3D object. It has been proven in [32] that the eigenvalue matrix is invariant to sampling order of the surface 

points. Keeping only a relatively small percentage of the first singular values (Section 6.1) provides a highly 

compact shape descriptor with significantly discriminative power and robustness to molecular shape con-

formations. 

4 AN AUGMENTED LOCAL DESCRIPTOR 

The proposed Augmented Local Descriptor (ALD) is computed on each of the
KN keyponts (Section 2) that 

provide a coarse approximation of the molecular surface. This results in a total of 
KN ALD descriptor vectors

ALD

iD  (i=1,…,
 KN ) that are extracted for each 3D molecule. Each descriptor vector ALD

iD  
consists of two parts: 

the former is a purely local feature, the Local Descriptor based on Surflet-Pair Relations LDSP

iD , and the latter 

is a Hybrid Local-Global feature HLG

iD .  

4.1 A Local Descriptor based on Surflet-Pair Relations (LDSP) 

The first step for the extraction of local descriptors is to define a local region (patch) on the 3D surface, on 

which the descriptor is computed. In our case, the local descriptor is defined on a spherical region of radius 

R
 
centered at each keypoint 

iq , 
KNi ,,1 K=  (Fig. 3). Regarding the computation of geometric features on 

the local patch, the Surflet-Pair-Relation Histogram descriptor [37] has been selected comparing with other 

local descriptors (Shape Impact Descriptor (SID) [69] and Local Spectral Descriptor (LSD) [33]), since it 

achieved the highest performance in molecular similarity search, while being at the same time fast to com-

pute, compact and rotation invariant. Given the set of oriented points ),( ii np , 
SNi ,,1 K=  

of the 3D mole-
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cule, the LDSP is computed on the subset { }),(,),,(),,( 2211 NNQ npnpnp K=  
of oriented points within a 

spherical region around keypoint q  
with Ri ≤- qp . For each pair of oriented points ),(),,( 2211 npnp , 

four attributes γβα ,,  
and δ  

are computed, representing the azimuthal angle, the cosine of polar angle, the 

direction and the length of the translation from p1 to p2, respectively. Then, all 4-tuples ( )δγβα ,,,  
of Q  

are 

collected into a 4-dimensional joint histogram.  

 

Fig. 3. The the local descriptor is defined on a spherical region (blue surface patch) of radius R centered 
at a keypoint qi. 

A more detailed description in the computation of attributes γβα ,,  
and δ  

is available in [37]. An im-

portant parameter that needs to be analyzed, though, is the number of bins 
Lk  

for each dimension of the joint 

histogram. Taking into account that the LDSP descriptor LDSP

iD for each keypoint 
iq is a 1D vector of dimen-

sion 4

Lk , the selection of parameter 
Lk  should be such that the number of bins is adequate to produce a dis-

criminative descriptor, while at the same time 
Lk  

is not very high so as to keep the descriptor dimensionality 

low. For 5<Lk , the discriminative power of the local feature was negatively affected, while for 5>Lk , the 

descriptor dimensionality was increasing dramatically without achieving significant improvement of accura-

cy, thus, 5=Lk was selected, resulting in a descriptor vector LDSP

iD  of size 625. The optimal value for radius 

R  has been estimated in a similar manner: very low values of R
 
result in spherical regions with trivial 

shape information; for very high values of R , the local character of the descriptor, which gives its robustness 

to non-rigid problems, disappears. Eventually, an optimal choice for our experiments was 
ARR ⋅= 4.0 , 

where 
AR is the radius of the 3D molecule’s smallest bounding sphere.  

4.2 A Hybrid Local-Global feature (HLG) 

Similar to LDSP, the Hybrid Local-Global feature (HLG) is computed for each keypoint 
iq , 

KNi ,,1 K= . More 

specifically, the following set is computed for each 
iq :  
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 ( ) ( ) ( ){ },,,,,,, 21 Si Niii ddddddDD pqpqpqq K= , (3) 

where ( )
jidd pq ,  is the diffusion distance from the keypoint 

iq  
to sample point 

jp , 
SNj ,,1 K= . The SN  

diffusion distances of the set 
i

DDq are accumulated into a 1D histogram of 100=Hk  
bins. Again, the di-

mension 
hk  has been experimentally determined [35]. This histogram, which is normalized so that the sum of 

all values equals 1, constitutes the HLG descriptor HLG

iD of keypoint 
iq . 

According to the above definition, the HLG descriptor is neither a purely local feature nor a global de-

scriptor. It combines local characteristics – as it is computed for each keypoint – with global characteristics – 

as it takes into account the set of diffusion distances of the entire molecule. HLG resembles to the Local Dis-

tance Feature (LDF) that was proposed in [35]. However, in [35], the distances to all points 
jp  

are computed 

using a Manifold Ranking algorithm [41], according to which each keypoint 
iq is used as the source of diffu-

sion of ranking score for the MR. The resulting histogram is created by all ranking scores at sample points 
jp

. In this paper, the distances ( )
jidd pq ,  are computed using the framework presented in Section 3. Thus, 

diffusion distances are computed only once for both the DDMR and the HLG descriptors. 

4.3 Creating a Bag of Augmented Local Descriptors (BoALD) 

During this step, the local LDSP descriptors and the hybrid HLG descriptors are integrated into a global his-

togram. This process is summarized in Fig. 4. Initially, for each keypoint 
iq with LDSP descriptor 

( ) ( )( )4 ,   ,1= L

LDSP

i

LDSP

i

LDSP

i kdd KD
 

and HLG descriptor
 

( ) ( )( )
H

HLG

i

HLG

i

HLG

i kdd  ,   ,1= KD , the ALD 

descriptor is given by:  

 ( ) ( ) ( ) ( )( )
H

HLG

i

HLG

iL

LDSP

i

LDSP

i

ALD

i kd    d  kd    d ,,1,,,1= 4
KKD  (4) 

ALD

iD  is a histogram of dimension 7251006254 =+=+= HLA kkk . To produce a global descriptor from 

the 
KN  local descriptors 

ALD

iD , the Bag-of-Features approach has been utilized. Let { }
VNV vvv ,,, 21 K=  

be 

a set of visual words. The dimension of each visual word is equal to 
Ak  i.e. of the ALD histogram. The set V  

is created by applying k-means clustering to a subset (training set) of the ALD descriptors 
ALD

iD  of the mo-

lecular database. The descriptors that constitute the training set are selected randomly (10% of the local fea-

tures of the database) in order to capture a representative view of the database. Each visual word v  is the 
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center of a cluster. Then, each ALD descriptor 
ALD

iD of the 3D molecule is vector quantized into a visual 

word and a histogram of VN  visual words is produced. This histogram 
BoALD

D  is called Bag-of-ALD de-

scriptors or BoALD.  

The size of vocabulary VN  should be carefully chosen since it affects both retrieval accuracy and compu-

tational cost. For large datasets, which imply also a large number of samples to cluster, an increase of size 

VN  would require high computation times for the k-means clustering. On the other hand, retrieval accuracy 

is improved as vocabulary size increases, until a specific upper limit is reached, above which no further im-

provement is observed. Based on the aforementioned criteria, the optimal choice of vocabulary size is 

1000=VN , as it has been experimentally found. 

 
Fig. 4. The process for computing the BoALD descriptors. 

 

5 SIMILARITY MATCHING 

Let 
DDMR

D  and 
BoALD

D  be the DDMR and BoALD descriptor vectors that are extracted using the methods 

described in Sections 3 and 4, respectively. The overall shape dissimilarity between two 3D molecules A and 

B can be calculated as the weighted sum of the dissimilarities of each descriptor separately: 

 ( ) ( ) ( )BAdiswBAdiswBAdis
BoALDBoALDDDMRDDMR ,,, ⋅+⋅= , (5) 

where 
DDMR

dis  and 
BoALD

dis  are the dissimilarities of DDMR and BoALD descriptors, respectively, and 

DDMR
w , 

BoALD
w  their corresponding weights. In general, the selection of the optimal distance metric for each 

descriptor is not trivial. An extensive study on the performance of the most well-known dissimilarity metrics 

is available in [36]. In the case of the DDMR descriptor, the X-Distance (or normalized Manhattan Distance) was 
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experimentally proven to be the optimal metric: 

 ( )
( ) ( )
( ) ( )∑

= +

−
⋅=

DN

i
DDMR

B

DDMR

A

DDMR

B

DDMR

ADDMR

iDiD

iDiD
BAdis

1

2, , (6) 

where 
DDMR

AD , 
DDMR

BD are he descriptors of molecules A and B, respectively and 
DN  is the dimensionality 

of the descriptor vector. Similarly, the optimal distance metric for the BoALD descriptor is the Kullback-Leibler 

Divergence: 

 ( ) ( ) ( )( ) ( )
( )∑

=

−=
VN

i
BoALD

A

BoALD

BBoALD

B

BoALD

A

BoALD

iD

iD
iDiDBAdis

1

ln, , (7) 

where 
BoALD

AD , 
BoALD

BD are the descriptors of molecules A and B, respectively and VN  is the dimensionality 

of the descriptor vector. 

After selecting the optimal dissimilarity metrics, the weights 
DDMR

w , 
BoALD

w  need to be determined. In 

our case, we followed the Particle Swarm Optimization (PSO) strategy [36] for the weight optimization. PSO 

is an algorithm for global optimization. It is motivated by the social behavior of organisms such as bird flock-

ing and fish schooling. PSO optimizes a problem in which a best solution can be represented as a point or 

surface in an n-dimensional space. It iteratively tries to improve a candidate solution based on a given quality 

measure (fitness function). PSO establishes a population (swarm) of candidate solutions, known as particles 

that move around in the search space, and are guided by the best found positions, updated while better posi-

tions are found by the particles. 

The population of candidate solutions, in our case, is the weights 
DDMR

w , 
BoALD

w , which can take arbi-

trary values between [ ]1,0 . The fitness function to be optimized is the average Tier-1 precision, which is calcu-

lated on a train dataset. More specifically, each 3D molecule of the dataset is used as query to retrieve similar 

objects, using (5) as dissimilarity metric. The retrieved results are ranked in ascending order. The Tier-1 pre-

cision is given by the following equation: 

 1,
)(

1 −== CK
K

KR
P

C

T
 (8) 

where K  is the number of first retrieved objects, )(KR
C

is the number of retrieved objects within the K-

first, which are of the same class C with the query, and C  is the number of objects that belong to class C . 

PSO resulted in the following weights: 62.0=DDMR
w , 38.0=BoALD

w . 
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6 EXPERIMENTAL RESULTS 

For the experimental evaluation of the proposed method, four different datasets have been selected. The 

first dataset is part of the Database of Macromolecular Movements (MolMovDB) [38], which comprises mole-

cules with large conformational changes (http://www.molmovdb.org/), also including the intermediate 

morphs [70]. It consists of 2695 PDB files classified into 214 categories [55]. Each category consists of a collec-

tion of morphs representing different states of the same molecule. This dataset is used for parameter selection 

and for comparison with existing flexible molecular shape matching approaches [27][28]. The second dataset 

consists of 2631 3D protein structures. It is a subset of the FSSP database [49] and was created by us to 

demonstrate the performance of the Spherical Trace Transform (STT) in [16]. The 2631 proteins are classified 

into 27 classes according to the FSSP/DALI algorithm [50]. Each class consists of different protein structures, 

which have at least 25% similarity in their amino-acid sequence (according to the FSSP/DALI classification). 

The high classification accuracy achieved by STT in this dataset reveals that the proteins that belong to the 

same class, apart from their 25% sequence similarity, demonstrate also rigid shape similarity. The second 

dataset has been used to evaluate the performance of the proposed method in rigid shape matching of 3D 

protein structures and it is publicly available at vcl.iti.gr/protein_retrieval/PDB_FSSP.zip. It is worth men-

tioning that the first two datasets are different in nature and cannot be compared, since they measure differ-

ent aspects of the molecular shape comparison problem (flexible vs rigid shape similarity), their classes have 

been created based on different criteria and none of the datasets is subset of the other. Finally, the third and 

fourth dataset are used to demonstrate the performance of our framework in large-scale virtual screening of 

ligands. Experiments have been performed on a PC with i5 2.8GHz processor, 4GB RAM. 

6.1 Parameter Selection for the DDMR Descriptor 

For the implementation of the DDMR descriptor (Section 3.1), the Matlab Toolbox for Dimensionality Reduc-

tion2 (v0.8.1) has been selected, using the default parameters 1=h  and 1=t . The discriminative power of 

DDMR mainly depends on two parameters: a) the number SN  of sample points ip  on the molecular surface, 

and b) the dimensionality of DDMR descriptor vector, i.e. the number n
 

of first singular values 

{ }nλλλ ,,, 21 K  of SVD (2). By increasing the number of sample points SN , a higher-quality representation 

of the surface is achieved and accuracy is improved, however, this results in higher descriptor extraction 

times. Additionally, an increase of n
 
may also improve the accuracy. We run several sets of experiments us-

________ 

2 http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html 
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ing different values of SN  and n . As a performance metric, the average Tier-1 Precision has been selected (8). 

In Fig. 5 a), the average Tier-1 Precision for different values of SN  and n , in MolMovDB is presented. It is 

obvious that as the number of sample points SN increases a higher precision is achieved. Using a mesh reso-

lution higher than 2000 points, though, the improvement in accuracy is negligible. Similar conclusions are 

drawn regarding the number n
 
of first singular values. For values n  higher than 50-60, there is no signifi-

cant improvement in precision.  

A critical factor for the parameter selection is the descriptor extraction time. Since the process of extracting 

the DDMR descriptor involves computations on SS NN ×  matrices, the processing time may increase prohib-

itively as the number of sample points SN  increases. This is highlighted in Table I, where it is obvious that 

for meshes consisting of 4000 points it takes approximately one minute for descriptor extraction, while for 

meshes of 1000 points the extraction time is less than 2 seconds. For the experiments that will be presented in 

the following subsections the values 2000=SN  and 50=n  have been selected for DDMR. 

  
a) b) 

Fig. 5. a) Parameter selection for DDMR descriptor: the average Tier-1 Precision in MolMovDB for dif-

ferent values of n  and SN ; b) Parameter selection for BoLDSP descriptor: the average Tier-1 Precision 

in MolMovDB for different values of radius R  and SN . 
 
Table I: Average extraction times of the DDMR descriptor for different numbers of sample points. 

Number of sample 

points NS 

 DDMR Descriptor  

Extraction Time (s) 

500 0.47 

1000 1.34 

2000 4.69 

3000 14.08 

4000 46.52 

6.2 Parameter Selection for the BoALD Descriptor 

The BoALD descriptor has been implemented by us in C++ based on the works presented in [35] and [37]. 

The performance of BoALD is affected by several parameters: a) the radius R  of the local descriptor LDSP; b) 
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the number of sample surface points SN ; c) the number of local points 
KN , and d) the vocabulary size VN  

of the codebook. The number of surface points SN  is related to radius R  as follows: a small R  provides 

sufficient locality to the descriptor but it requires a high SN  so that the local histograms are well populated. 

The number of local points 
KN  affects the selection of the vocabulary size VN : for a given 

KN , an increase 

of VN  improves the accuracy until a specific upper limit is reached. Beyond that limit a further increase of 

VN  has no effect in accuracy. If we increase 
KN , then we can achieve a higher upper limit for VN  resulting 

in a more discriminative descriptor. It is worth mentioning that since k-means clustering (used in bag-of-

features) involves random selection of cluster centers, the mean values of Tier-1 accuracy are reported, where 

each experiment was repeated ten times. However, in many cases, the differences between the Tier-1 accura-

cy values are minimal. To verify this, for all experiments, we applied statistical pairwise t-tests, where the 

calculated differences of means were insignificant at level 0.05. In Fig. 5 b), the average Tier-1 Precision of the 

BoLDSP (bag-of-features to LDSP) descriptor in MolMovDB for different values of radius R  and number of 

sample points SN  is depicted. Starting from 0=R , precision increases as R  increases, until a maximum is 

reached. As an example, for meshes with 3000 points, the maximum precision is achieved for 
AR⋅4.0 . 

 
Fig. 6. Parameter selection for BoALD descriptor: the average Tier-1 Precision in MolMovDB for differ-
ent values of vocabulary size VN  and 

KN . 

In Fig. 6, the average Tier-1 Precision of the BoALD descriptor in MolMovDB for different values of vo-

cabulary size VN  and number of local points 
KN  is depicted. For 250=KN , an increase of VN  does not 

affect the average precision. Similarly, for 500=KN  the precision is not improved for 1000≥VN . Finally, 

for 1000=KN , the improvement in accuracy comparing to 500=KN  is negligible. It is also worth men-

tioning that the dimensionality VN  of BoALD should be kept relatively low to achieve faster matching times. 
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For the experiments that will be presented in the sequel the values 3000=SN , 
ARR ⋅= 4.0 , 500=KN

and 1000=VN  have been selected for BoALD. 

Table II: Average extraction times of the BoALD descriptor. 
Number of sample 

points NS 

LDSP Descriptor 

Extraction Time (s) 

HLG Descriptor 

Extraction Time (s) 

BoALD bag-of-feature inte-

gration time (s) (NK=500) 

1000 0.28 0.34 

2.34 
2000 0.42 1.66 

3000 0.75 3.08 

4000 0.95 8.74 

The processing times for extraction of local features LDSP and HLG and for the BoALD bag-of-feature in-

tegration are given in Table II. The codebook learning via k-means clustering is a computationally expensive 

process. For the MolMovDB dataset with 2695 molecules and 500=KN  local features per molecule, the 

total number of training samples (10% of the dataset) is 134750 local features. The k-means clustering of 

134750 features with vocabulary size 1000=VN  took about 1700s (28 minutes). Then, the bag-of-features 

integration time for each molecule is 2.34s, thus, 6300s (105 minutes) for the entire database. These computa-

tions need to be performed only once, during the pre-processing stage.   

6.3 Performance Evaluation in MolMovDB – Flexible Similarity Matching 

For performance evaluation in MolMovDB the precision-recall curve has been used, where precision is the 

proportion of the retrieved molecules that are relevant to the query and recall is the proportion of relevant 

molecules in the entire database that are retrieved. In a benchmark dataset that is classified, such as 

MolMovDB, relevant items are those belonging to the same category with the query. In Fig. 7 a), a compari-

son of different local surface descriptors in MolMovDB is presented. All local descriptors are extracted on the 

same set of keypoints 
iq , following a bag-of-features computation to produce a global descriptor vector. For 

the local descriptors reported in section 4.1, namely the Shape Impact Descriptor (SID), the Local Spectral 

Descriptor (LSD) and the Local Descriptor based on Surflet-Pair Relations (LDSP), the Bag-of-SID (BoSID), 

Bag-of-LSD (BoLSD) and Bag-of-LDSP (BoLDSP) are created, respectively. BoLDSP achieves better retrieval 

accuracy than the other two candidates, which justifies its selection as a local feature. Moreover, the contribu-

tion of spatial context as a complementary feature to the purely local descriptors is also demonstrated in Fig. 

7 a). Combining LDSP and the hybrid HLG into the proposed BoALD descriptor achieves significantly higher 

performance than the purely local descriptors. It is worth mentioning that BoALD is more discriminative 

than the BoFoG descriptor presented in [35], which also combines a local with a hybrid descriptor.  
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a) b) 

 
Fig. 7. a) Comparison of BoSID, BoLSD, BoLDSP , BoFoG and BoALD in MolMovDB; b) Comparison of 
DD-Hist, GDMR, IDMR, DDMR, BoALD and DDMR-BoALD in MolMovDB.  

Another innovative feature of the proposed work is the modal representation of the diffusion distance ma-

trix, which results in the DDMR descriptor. In Fig. 7 b), DDMR is compared against the method of [28], which 

accumulates the pairwise diffusion distances into a histogram (DD-Hist). The proposed DDMR descriptor 

outperforms DD-Hist especially for higher values of recall. The superiority of Diffusion Distance over Geo-

desic Distance and Inner Distance, in capturing molecular flexibility, is also demonstrated in Fig. 7 b). The 

modal representations of GD (GDMR) and ID (IDMR) are derived by substituting the Diffusion Distance Ma-

trix in equation (2) with the Geodesic Distance Matrix and Inner Distance Matrix, respectively. Again, the 

proposed DDMR descriptor achieves higher retrieval accuracy. Finally, the combination of DDMR with 

BoALD, using the weighted sum of dissimilarities (5), is presented in Fig. 7 b). DDMR-BoALD clearly outper-

forms the rest of descriptors, which confirms our assumption that the combination of a global feature 

(DDMR) with a local feature (BoALD) achieves higher retrieval accuracy than each descriptor separately. Fig. 

13 shows three morph deformations for each of the following macromolecules: a) Dehydroquinase, b) 

NHP6A and c) trp repressor. The molecule in the first column is given as query and the respective ones in 

second and third columns are retrieved within the first ranking positions. Despite the changes in their global 

shape due to molecular flexibility, the morphs still demonstrate high similarity to the query. 

6.4 Evaluation of Rigid Similarity Matching 

In Fig. 8, the precision-recall curves for the second dataset (subset of FSSP) are depicted. Our DDMR-BoALD 

descriptor is compared with STT [16], which is a rigid shape matching method. It is obvious that DDMR-

BoALD outperforms STT in a rigid-shape dataset as well. This is mainly due to the fact that the combination 

of intrinsically different features (a global, a local and a hybrid local-global) increases the robustness of the 

resulting descriptor.  
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Fig. 8. Comparison of the proposed method with STT in the subset of FSSP database that was used in 
[16]. 

6.5 Comparison with structural alignment methods 

In the experiments presented in the previous subsections, the proposed method is compared with descriptor-

based approaches. A comparison of DDMR-BoALD descriptor with two structural alignment methods, 

FATCAT [65] and TM-Align [64], is presented in Fig. 9, where their superiority over our descriptor in terms 

of performance is obvious. In general, structural alignment methods achieve better performance than de-

scriptor-based methods. However, for a thorough comparison between these intrinsically different approach-

es, additional parameters need to be taken into account. First of all, it is worth mentioning that DDMR-

BoALD relies on geometric information only, which makes it appropriate for use in a wide range of mole-

cules, both large macromolecules and small ligands. This is not possible in the case of structural alignment 

methods, which are looking for correspondences between atoms/residues. As an example, FATCAT and TM-

Align cannot be applied to the ligands of section 6.7. Another important parameter is the efficiency of the 

method. In Table III, the times for comparing a pair of molecules using TM-Align, FATCAT and the proposed 

DDMR-BoALD descriptor are reported. DDMR-BoALD is 12500 times faster than TM-Align and 70000 times 

faster than FATCAT. Based on the above, descriptor-based and structural alignment methods should not be 

competitive but they should work collaboratively, i.e. a descriptor-based method can be used for fast filter-

ing, at a first stage, and a structural alignment method can be used to refine a smaller subset of the results. 

Table III: Average CPU times for comparing a pair of molecules using TM-Align, FATCAT and the 
proposed DDMR-BoALD descriptor. 

Method TM-Align FATCAT DDMR-BoALD 

Average CPU Time for Pairwise Comparison 0.25s 1.4s 0.02ms 

In Table IV and  

Table V, the performance of combining the proposed DDMR-BoALD with TM-Align method is demonstrated 

in MolMovDB and the subset of FSSP datasets, respectively. More specifically, each item of the dataset is 

used as query and DDMR-BoALD is applied to match the query with all items of the dataset (fast filtering 

stage). Then, TM-Align is applied only to the first ranked results for re-ranking. Different percentages of the 
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first ranked results are shown (from 20% of first ranked to 80%). Performance is measured in Nearest 

Neigbour, Tier-1 precision and Tier-2 precision. These evaluation measures share the similar idea, that is, to 

check the ratio of models in the query’s class that also appear within the top K matches, where K= 1 for Near-

est Neighbor, K = |C| − 1 for Tier-1, and K = 2 *(|C| − 1) for Tier-2 and |C| is the number of class members. 

The reported scores are averaged by all the objects in database. It should be stressed that it was not possible 

to compute precision-recall diagrams, since, for some items (queries) of the dataset, recall of all relevant (to 

the query) items (100%recall) may require retrieval of more than 80% of the first ranked results. 

  
a) b) 

Fig. 9. Comparison of the proposed method with a) FATCAT and TM-Align in MolMovDB and b) TM-Align 
in the subset of FSSP database 

 
From Table IV and  

Table V, it is clear that when we apply the TM-Align as a re-ranking step to different percentages of the ini-

tially ranked results using the DDMR-BoALD fast filtering, we preserve the accuracy high in terms of NN, 

Tier1 and Tier2, while we significantly speed up the matching time. In this set of experiments, the percent-

ages of the initially ranked results vary from 20 to 100%, where in the case of 100% TM-Align is applied to all 

the ranked results without the DDMR-BoALD fast filtering. By increasing the percentage of the first ranked 

results to apply TM-Align from 20% to 100%, NN is almost not affected, the improvement in Tier-1 and Tier-2 

is minor (less than 2%), while the matching time can be up to 5 times faster.  

Table IV: Performance (average Nearest Neighbour, Tier-1 precision and Tier-2 precision) and match-
ing times of the proposed DDMR-BoALD method, the TM-Align method and their combination, in 
MolMovDB dataset. Percentages show the amount of first items ranked by DDMR-BoALD that are kept 
for re-ranking with TM-Align. In the last column, only the TM-Align method has been used (no filtering 
step with the proposed method has been applied). 

 
DDMR-
BoALD 

TM-Align 

(20%) 

TM-Align 

(40%) 

TM-Align 

(60%) 

TM-Align 

(80%) 

TM-Align 

(100%) 

NN 0.991 0.996 0.996 0.997 0.997 0.997 

Tier-1 0.773 0.927 0.930 0.933 0.934 0.934 

Tier-2 0.419 0.476 0.479 0.481 0.482 0.482 

All-to-all Matching Time (s) 155 388523 776891 1165260 1553628 1941842 
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Table V: Performance (average Nearest Neighbour, Tier-1 precision and Tier-2 precision) and matching 
times of the proposed DDMR-BoALD method, the TM-Align method and their combination, in the sub-
set of FSSP dataset. Percentages show the amount of first items ranked by DDMR-BoALD that are kept 
for re-ranking with TM-Align. In the last column, only the TM-Align method has been used (no filtering 
step with the proposed method has been applied). For 20%, average Tier-2 precision cannot be comput-
ed, since there are classes in the dataset, where the number of items needed for Tier-2 is greater than the 
20% of the dataset.  

 
DDMR-
BoALD 

TM-Align 

(20%) 

TM-Align 

(40%) 

TM-Align 

(60%) 

TM-Align 

(80%) 

TM-Align 

(100%) 

NN 0.958 0.958 0.959 0.959 0.959 0.959 

Tier-1 0.759 0.898 0.906 0.915 0.921 0.922 

Tier-2 0.432 - 0.466 0.476 0.481 0.481 

All-to-all Matching Time (s) 138 346246 692354 1038462 1384570 1730540 

6.6 Virtual Screening of Ligands 

The proposed method has been also evaluated in large-scale virtual screening of ligand molecules, where the 

investigation of an accurate algorithm for rapid shape matching is a major scientific challenge. Two bench-

mark datasets have been used in our tests. The first is called the “Directory of Useful Decoys” (DUD) [43]. DUD 

is derived from the ZINC database of commercially available compounds for virtual screening [44]. A subset 

of DUD3 was downloaded, which consists of 13 targets and has been already used in recent studies [24]. The 

dataset is presented in Table VI. More specifically, each of the 13 targets is used as query to retrieve similar 

molecules from its corresponding set of actives+decoys (e.g. ace is used as query in the set of 46 actives and 

1796 decoys and so on). The more actives are included among the first retrieved results the better the accuracy 

of the search algorithm is. The data in Table VI are adapted from the work in [24], however, we provide it 

here as well, in order to have a better visualization of the dataset. 

Table VI: The subset of DUD dataset [24] that was used in our experiments  
Target PDB Actives Decoys Decoys per Active 

angiotensin-converting enzyme (ace) 1o86 46 1796 39.04 

acetylcholinesterase (ache) 1eve 100 3859 38.59 

cyclin-dependent kinase 2(cdk2) 1ckp 47 2070 44.04 

cyclooxygenase-2(cox2) 1cx2 212 12606 59.46 

epidermal growth factor receptor(egfr) 1m17 365 15560 42.63 

factor Xa(fxa) 1f0r 64 2092 32.69 

HIV reverse transcriptase(hivrt) 1rt1 34 1494 43.94 

enoyl ACP reductase(inha) 1p44 57 2707 47.49 

P38 mitogen activated protein(p38) 1kv2 137 6779 49.48 

phosphodiesterase(pde5) 1xp0 26 1698 65.31 

platelet derived growth factor receptor kinase(pdgfrb) 1t46 124 5603 45.19 

tyrosine kinase SRC(src) 2src 98 5679 57.95 

vascular endothelial growth factor receptor(vegfr2) 1fgi 48 2712 56.5 

The second benchmark is the anti-HIV dataset derived from the National Cancer Institute4 (NCI) and is 

employed to simulate a typical virtual screening experiment. It consists of 42687 compounds [45], which are 

split into 423 confirmed actives, 1081 moderately actives and 41185 confirmed inactives. The structures are 

________ 

3 http://dud.docking.org/ 
4 http://dtp.nci.nih.gov/docs/aids/aids_data.html 
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available for download5 in SDF format. The objective of the virtual screening experiment in this dataset is to 

use the 1081 moderately actives as queries and search into the database of actives and inactives. The more 

confirmed actives are retrieved among the first ranked results the higher the accuracy of the algorithm is. 

Three different metrics have been used to evaluate the performance of the proposed method in these da-

tasets. The first is the Enrichment Factor (EF) [46], which describes the ratio of actives retrieved relative to the 

percentage of the database scanned: 
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where 
AT  is the total number of actives in the database of size 

DT  and aN  is the number of actives in the top 

x  percent xN  of the database. Another metric is the Boltzmann Enhanced Discrimination of Receiver Operating 

Characteristic (BEDROC) [47], calculated as: 
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where n  is the number of actives among N  compounds, NnRa /= , ir  is the rank of the ith active and a  

is a weighting parameter. In our experiments, 2.32=a  is selected, which corresponds to %5=x  of the 

relative rank. Similarly, %5=x  is also selected for the EF metric (9). 

Finally, the Area Under Curve for Receiver Operator Characteristic (ROCAUC) [24] is computed by: 

 ∑−=
aN

i d

i

decoys

a N

N

N
AUCROC

1
1  (11) 

where aN  and dN  is the number of actives and decoys, respectively, and 
i

decoysN  is the number of decoys 

ranked above the ith active. The proposed DDMR-BoALD descriptor is compared with two approaches for 

fast virtual screening, which are also based on shape similarity matching. The first one is the 3D Zernike De-

scriptor (3DZD) [24], which is based on a series expansion of a given 3D function. The second one is the Ul-

trafast Shape Recognition (USR) scheme [11], which represents the molecular shape as a set of statistical mo-

ments generated from all-atom distance distributions that are calculated with respect to preselected reference 

locations. Both aforementioned methods are rotation-invariant, i.e. are able to capture the shape information 

independent of orientation. 

________ 

5 http://ligand.info 
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a) b) 

Fig. 10. Performance of the 3DZD, USR and the proposed method on the 13 targets of the DUD dataset, 
using a) the Enrichment Factor metric; b) the AUCROC metric. 

In Fig. 10 a), Fig. 10 b) and Fig. 11, the performance of 3DZD, USR and DDMR-BoALD on the 13 targets of 

the DUD dataset is given for the metrics EF ( %5=x ), AUCROC and BEDROC ( 2.32=a ), respectively. For 

3DZD, the descriptor of order-12 using Correlation Coefficient as distance metric is reported, while for USR, 

the descriptor of order-16 using Correlation Coefficient as distance metric is reported [24]. 

 
Fig. 11. Performance of the 3DZD, USR and the proposed method on the 13 targets of the DUD dataset, 
using the BEDROC metric. 

Regarding the EF metric, the proposed method outperforms the other two in 4 out of 13 targets of the 

DUD Dataset, while 3DZD and USR are better in 5 and 4 targets, respectively. For the AUCROC metric, 

DDMR-BoALD is better in 5 targets, 3DZD in 3 and USR in 5. Finally, regarding the BEDROC metric, the 

proposed method outperforms others in 6 targets, 3DZD in 6 and USR in 1 target. The average scores are giv-

en in Table VII. The results derived using the 3 different metrics are not fully consistent, since e.g. USR is bet-

ter than 3DZD in EF and AUCROC but it is worse in BEDROC. Overall, the proposed method is slightly bet-

ter than the other two approaches in all metrics. 

Table VII: EF, AUCROC and BEDROC (average) in DUD dataset for 3DZD, USR and DDMR-BoALD. 
Descriptors Metric Order EF 5% AUCROC BEDROC 32.2 

3DZD Correlation coefficient 12 2.90 0.59 0.14 

USR Correlation coefficient 16 2.99 0.62 0.12 

DDMR-BoALD - - 3.05 0.64 0.16 
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The performance of 3DZD, USR and DDMR-BoALD is also compared in the anti-HIV dataset. In Table 

VIII, the average values of EF ( %5=x ), AUCROC and BEDROC ( 2.32=a ), for the three methods, are pre-

sented. Several results are available for both 3DZD and USR depending on the order of expansion of de-

scriptor and the distance metric used. Again, the proposed method outperforms others in all three metrics. 

A critical parameter that should be taken into account in virtual screening, especially in large databases, is 

the similarity matching time. In the anti-HIV dataset, which consists of more than 40000 molecules, the search 

times for USR are approximately 0.74-0.76s, while for 3DZD are 2.62-2.70s. These methods are significantly 

faster than non-shape-based approaches, which may take several hours for the same virtual screening task. 

The reason is that the shape-based descriptor vectors constitute a very compact representation of the molecu-

lar structure, thus, similarity matching using a common distance metric is rapid. The proposed DDMR-

BoALD descriptor takes about 2.83s for a one-to-all matching in the anti-HIV dataset, thus, it is comparable to 

3DZD. Consequently, since DDMR-BoALD outperforms 3DZD and USR in terms of retrieval accuracy, it can 

provide a better solution for rapid geometric virtual screening.  

Table VIII: Average values of EF, AUCROC and BEDROC in the anti-HIV dataset for 3DZD, USR and 
the proposed method  

Descriptors Metric Order EF 5% AUC ROC BEDROC 32,2 

3DZD 

Correlation coefficient 

4 1.298 0.421 0.0485 

6 1.334 0.423 0.0500 

8 1.297 0.430 0.0490 

10 1.208 0.435 0.0461 

12 1.297 0.430 0.0490 

14 1.146 0.444 0.0440 

Euclidean (DE) 

4 1.307 0.411 0.0471 

6 1.292 0.416 0.0473 

8 1.301 0.427 0.0477 

10 1.255 0.435 0.0464 

12 1.301 0.427 0.0477 

14 1.263 0.455 0.0470 

Manhattan (DM) 

4 1.281 0.412 0.0466 

6 1.267 0.418 0.0463 

8 1.250 0.431 0.0462 

10 1.201 0.442 0.0448 

12 1.251 0.431 0.0462 

14 1.222 0.463 0.0461 

USR 

Correlation coefficient 
12 1.248 0.417 0.0461 

16 1.357 0.422 0.0480 

Euclidean (DE) 
12 1.301 0.392 0.0486 

16 1.296 0.386 0.0485 

Manhattan (DM) 
12 1.403 0.395 0.0515 

16 1.335 0.386 0.0497 

DDMR-BoALD - - 1.923 0.479 0.0521 

We have implemented an online tool for shape similarity search using the proposed method. Search is per-

formed in the following datasets: a) the subset of the FSSP database; b) the subset of MolMovDB and c) the 
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anti-HIV dataset. A snapshot of the online tool6 is given in Fig. 12. In this example, a search task is performed 

into MolMovDB using as query the molecule “ff3” that belongs to class “062670-27261”. The first 14 retrieved 

results are presented. It is worth mentioning that the first 12 retrieved results belong to the same class with 

the query. These are actually representing the same molecule but with conformational changes. Despite the 

flexibility that is observed in the lower left part of the molecules, the algorithm is robust in capturing their 

global shape similarity. The online tool allows visualization of the 3D molecular structures using the Jmol7 

open-source Java viewer for chemical structures in 3D. By clicking on the thumbnail image of a retrieved 

molecule, a pop-up window of Jmol viewer appears. 

 

Fig. 12. Example of similarity search in MolMovDB using the proposed method 
(http://vcl.iti.gr/protein_retrieval/). 

7 CONCLUSIONS AND DISCUSSION 

We have presented a framework for similarity search of flexible molecules, which exploits both local and 

global geometric features. The global feature is based on pairwise computations of diffusion distances over 

the points of the surface and a singular value decomposition of the resulting diffusion distance matrix. The 

local feature is computed on each keypoint of the surface by accumulating pairwise relations among oriented 

surface points into a local histogram. Finally, the hybrid local-global feature is computed for each keypoint, 

taking into account the diffusion distances from the keypoint to all surface points, thus, enhancing the local 

keypoint with spatial context. The local and the hybrid features are concatenated into a joint histogram per 

keypoint and the multiple histograms are integrated into a global descriptor using the bag-of-features ap-

________ 

6 http://vcl.iti.gr/protein_retrieval/ 
7 http://www.jmol.org/ 
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proach. The global and local features are combined to produce a geometric descriptor that achieves higher 

retrieval accuracy than each feature does separately. 

The proposed method achieves high retrieval accuracy in similarity search of flexible molecules. In the 

MolMovDB dataset, which consists of molecules with large conformational changes, the proposed frame-

work clearly outperforms other existing approaches in terms of precision-recall. At the same time, DDMR-

BoALD descriptor achieves high retrieval performance in datasets of rigid molecules. Additionally, DDMR-

BoALD provides a compact representation of the 3D molecular structure; therefore, it is appropriate for 

large-scale search tasks such as the virtual screening in large ligand databases. DDMR-BoALD is appropriate 

for retrieving small ligands as well, since it is comparable to slightly better than existing state-of-the-art ap-

proaches in two benchmarks for virtual screening. 

 
a.1 

 
a.2 

 
a.3 

 
b.1 

 
b.2 

 
b.3 

 
c.1 

 
c.2 

 
c.3 

Fig. 13. Morph deformations for the following macromolecules a) Dehydroquinase, b) NHP6A and c) 
trp repressor. The molecule in the 1st column is given as query and the respective ones in 2nd and 3rd 
columns are retrieved within the first ranking positions, demonstrating high similarity to the query. 

Nevertheless, the retrieval accuracy especially in virtual screening can be further improved, by enhancing 

the geometric features with non-geometric ones, such as physicochemical properties. At the moment, the lat-

ter are exploited by approaches that are extremely time-consuming, which, in combination with the rapid 

increase in size of the molecular databases, leads to prohibitively large search times. The effective integration 

of non-geometric information into a compact representation along with the shape-based features still remains 

a challenge for future research. Another important issue is that the number of mesh vertices sampled on the 
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molecular surface remains the same irrespective of the size of the molecule. The motivation behind this is the 

fact that a variable number of samples (proportional to the size of molecule) would result in descriptor vec-

tors that are not comparable to each other. On the other hand, a fixed number of sample vertices produces 

scale invariant descriptor vectors, that is molecules of similar shape but with different size are regarded as 

similar. While the latter could be regarded as an advantage in the case of generic object retrieval, in molecular 

similarity comparison it introduces a limitation to the proposed descriptor. Thus, a challenge for future re-

search is to investigate methods that are able to embed size information to the resulting descriptors. 
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