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Abstract—The accuracy of modern depth sensors, the robust-

ness of skeletal data to illumination variations and the superb

performance of deep learning techniques on several classifica-

tion tasks have sparkled a renewed interest towards skeleton-

based action recognition. In this paper, we propose a four-

stream deep neural network based on two types of spatial

skeletal features and their corresponding temporal representa-

tions extracted by the novel Grassmannian Pyramid Descriptor

(GPD). The performance of the proposed action recognition

methodology is further enhanced by the use of a meta-learner

that takes advantage of the meta knowledge extracted from

the processing of the different features. Experiments on sev-

eral well-known action recognition datasets reveal that our

proposed methodology outperforms a number of state-of-the-

art skeleton-based action recognition methods.

1. Introduction

Human action recognition has been a growing research
area for the past decades due to its wide applicability to
surveillance, video retrieval and human machine interaction.
Traditionally, human action recognition has been achieved
using RGB video sequences. However, the sensitivity of the
RGB data to illumination changes, background clutter and
occlusions and the technological advances in depth sensors
has led to the introduction of skeletal data (i.e., set of
joints in the 3D space) for human action recognition as they
have proven to be robust to illumination variations, human
scale and viewpoint. Although modern depth sensors can
reliably extract 3D joint coordinates, skeleton-based action
recognition remains a challenging problem due to variations
in the way people perform actions and joint self-occlusions.

Below, we present the work that is most related to ours,
however a comprehensive review of skeleton-based action
recognition methodologies can be found in [1]. Except from
raw joint coordinates, several recently proposed methods
employ skeletal spatial and temporal features. Seidenari
et al. in [2] proposed the decomposition of a skeleton in
kinematic chains and the expression of joint coordinates in
a chain in a local reference system, achieving rotation and
translation invariance. On the other hand, Hussein et al. in
[3] proposed a temporal covariance descriptor based on joint
coordinates, while Wang et al. in [4] employed a kernel-
based covariance matrix as a generic feature representation

for skeleton-based action recognition. Pair-wise joint dis-
tances and joint differences between current and previous
postures were employed in [5].

Zhou et al. in [6] proposed the extraction of discrim-
inative action key poses based on normalized joint loca-
tions, velocities and accelerations, while Sharaf et al. in
[7] employed a pyramid of covariance matrices to encode
the relationship between joint angles and angular velocities.
Xia et al. introduced Histograms of 3D Joint Locations
by assigning joint positions into cone bins in 3D space
[8]. Vemulapalli et al. proposed the representation of each
skeleton sequence as a curve in the Lie group and achieved
state-of-the-art performance in several action recognition
datasets [9]. An actionlet ensemble model that captures
local interactions in the form of relative spatial displacement
between skeleton joints was proposed in [10]. Meshry et al.
in [11] proposed gesturelets that encode the position and
kinematic information of skeleton joints, while Patrona et
al. in [12] extended gesturelets by adding automatic feature
weighting at frame level and employing kinetic energy to
identify the most representative action poses.

The outstanding performance of deep learning on several
tasks has led to its use on skeleton-based action recognition
as well. Zhang et al. proposed several geometric features
that can be extracted from skeleton joints and fed them to
a 3-layer Long Short-Term Memory (LSTM) network for
accurate human action classification [13]. Taking a different
approach, Wang et al. in [14] proposed Joint Trajectory
Maps that compactly encode spatio-temporal information of
3D skeleton sequences into multiple 2D images.

Finally, based on linear dynamical systems (LDSs),
which have been widely used in the past for dynamic
texture classification [15], Dimitropoulos et al. proposed
the representation of skeleton action sequences as clouds of
points in a Grassmannian manifold [16]. Inspired by LDSs
and the discriminative power of deep neural networks, we
propose in this paper a novel method based on alternative
temporal skeleton representations that can be combined in a
deep learning framework to achieve state-of-the-art action
recognition results. The main contributions of this work
are: (a) a novel four-stream deep neural network that takes
advantage of four different temporal skeleton representations
to achieve accurate and robust action recognition results, (b)
a novel descriptor (GPD) that captures dynamics of actions
from different temporal levels and (c) the use of a meta-
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Figure 1. Proposed deep neural network architecture for skeleton-based
action recognition.

learner, which is a network that exploits meta knowledge
from the various streams to improve classification accuracy.

The remaining of this paper is organised as follows:
Section 2 presents the proposed action recognition method-
ology, while Section 3 presents a comparative evaluation
of our methodology with respect to other state-of-the-art
algorithms on several action recognition datasets. Finally,
Section 4 concludes the work of this paper.

2. Methodology

In order to accurately and reliably classify actions, we
propose two skeletal spatial features. The first type of spa-
tial features is the 3D joint coordinates that are computed
based on a common preprocessing scheme, applied to the
raw joint coordinates [9], [13]. More specifically, all 3D
joint coordinates are initially transformed from the world
to a person-centric coordinate system by placing the hip
center at the origin. Afterwards, the body part lengths of
all skeletons in a dataset are normalized (without changing
joint angles) with respect to the corresponding lengths of a
reference skeleton that is randomly chosen from the dataset.
Finally, the skeletons are rotated in a way that the ground
plane projection of the left to right hip vector is parallel
to the global x-axis. Such a preprocessing makes skeletons
invariant to the absolute location of the human in the scene,
scale-invariant and view-invariant respectively.

The second type of spatial features that are employed in
this work is the joint-line distances [13]. Joint-line distances
model the distances from each joint to its projections on the
lines formed by every other skeleton joint pair. Given three
different joints of a skeleton J1, J2, J3 ∈ R3, the distance
d(J1, LJ2→J3

) between joint J1 and the line formed by J2
and J3, is given by employing Heron’s formula as follows:

d(J1, LJ2→J3
) =

2
√

s(s− d(J1, J2))(s− d(J2, J3))(s− d(J3, J1))

d(J2, J3)

(1)

,where d(∗, ∗) denotes the distance between two 3D joint
coordinates and s = 0.5(d(J1, J2) + d(J2, J3) + d(J3, J1)).
The motivation behind the selection of the joint-line dis-
tances lies in the fact that they consist an alternative spatial

representation that models the relationship between skeleton
joints. As a result, joint-line distances can complement 3D
joint coordinates, forming a very descriptive representation
that can significantly improve action recognition results.

Based on the previously defined spatial features, we pro-
pose a four-stream deep neural network, as shown in Figure
1. Both 3D joint coordinates and joint-line distances follow a
two-stream processing stage. In the 1st and 3rd streams, the
spatial features are directly fed to LSTMs in order to derive
temporal information, while in the 2nd and 4th streams,
novel GPD features, described in detail in Section 2.1, are
extracted from the spatial features and model the temporal
dynamics of these multi-dimensional signals. Afterwards,
the GPD features are processed with fully connected layers.
The processed features are then fed to softmax classifiers
in order to derive probabilities for each class, before these
probabilities are fused (i.e., averaged) to get an overall
prediction. The motivation behind the proposed network is
the construction of four different temporal representations
of the same skeleton sequence. Given that a single temporal
representation may not be descriptive enough for each tested
dataset, the use of four complementary temporal representa-
tions within a deep network that can weigh them accordingly
can assist in improving action recognition results both in the
same and across different datasets.

Finally, a meta-learner, described more extensively in
Section 2.2, is employed that concatenates the temporal
features computed from the four streams of the proposed
deep network and processes them in order to derive even
more discriminative features. These features are then fed
to another softmax classifier before the predictions from the
meta-learner and the fusion of the four streams are averaged
to give the final prediction.

2.1. LDS theory and Grassmannian pyramids

According to the LDS theory, the stochastic modeling of
both signal dynamics (represented as a time-evolving hidden
state process x(t) ∈ Rn) and appearance (y(t) ∈ Rd, where
d is the length of the input signal per frame) is encoded by
the following two stochastic processes:

x(t+ 1) = Ax(t) +Bv(t)

y(t) = ȳ + Cx(t) + w(t)
(2)

,where A ∈ Rn×n is the hidden state transition matrix, while
C ∈ Rd×n represents the mapping of the hidden state to
the output of the system. The quantities w(t) ∼ N(0, R)
and Bv(t) ∼ N(0, Q) are the measurement and process
noise respectively, while ȳ ∈ Rd is the mean value of
the observed data. The LDS descriptor, MLDS = (A,C),
contains both the appearance information of the observed
data modeled by C, and its dynamics that are represented
by A. Dimitropoulos et al. [16] proposed a higher-order
LDS, where a temporal sequence is split in segments, the
LDS descriptor of each segment is mapped to a point in the
Grassmannian manifold and these points are then clustered
to form a Histogram of Grassmannian points (HoGP).



Level 0:

Level 1:

Level 2:

t

...

1G 7G

ProjectionClustering

...
iG

Figure 2. A temporal sequence is split in segments, LDS descriptors are
projected to Grassmannian manifolds and histograms of Grassmannian
points are extracted and then concatenated to form the final GPD.

In this work, we extend HoGP descriptors and propose
the novel Grassmannian Pyramid Descriptor (GPD). The
motivation behind GPDs is the construction of a tempo-
ral representation with the ability to capture dynamics of
a multi-dimensional signal (i.e., 3D joint coordinates and
joint-line distances in this case) in different temporal reso-
lutions and of different segments. A GPD consists of three
levels, where in each subsequent level both the temporal
sequence and the window size that splits the sequence in
segments are halved (see Figure 2). As a result, a temporal
sequence can now be represented both in coarser levels,
achieving robustness to noise, and in finer levels, paying
more attention to details. Moreover, the proposed GPD rep-
resentation can effectively handle temporal scale variations.

Additionally, the LDS descriptors, extracted from each
temporal segment are projected as Grassmannian points
to different manifolds. As a result, the proposed GPD
representation leads to seven Grassmannian manifolds Gi,
i = {1, ..., 7}, where each Grassmannian manifold describes
the dynamics from specific segments of the temporal se-
quences and of different temporal resolutions. The clustering
of Grassmannian points is performed on each manifold
separately and thus a histogram is computed for each man-
ifold. Finally, the histograms are concatenated into a larger
histogram that consists the novel GPD representation. As
we show in the experimental section of this paper, such
a representation enhances the discrimination ability of the
proposed methodology in the task of action recognition.

2.2. Exploiting meta knowledge

Meta-learning is a sub-field of machine learning, where
an automatic algorithm is applied on the meta data of differ-
ent classifiers in order to improve their combined classifica-
tion accuracy. Recently, meta-learners have been employed
in deep learning architectures as well [17]. In this work, we
propose a meta-learner (see dotted outline in Figure 1) that

is applied on the features computed from the streams of our
deep model instead of being applied on their corresponding
predictions (i.e., after the softmax classifiers) and fuses
its prediction with the average prediction of the softmax
classifiers, significantly differentiating from previous uses
of a meta-learner in a deep learning framework.

The motivation behind the use of a meta-learner is the
fact that a classifier introduces inductive bias, meaning that
the classifier’s assumptions about a problem and the data
can make it effective only on similar types of problems.
Although this work deals specifically with skeleton-based
action recognition, the variations in skeleton acquisition pro-
cedures, number of joints and types of actions introduced by
the different datasets can significantly affect classifiers ren-
dering them unable to perform optimally across all datasets.
Furthermore, features should be weighted differently when
applied on different datasets as their contribution to the
action recognition task usually varies depending on the
current set of actions that needs to be identified.

The proposed meta-learner combines the features
learned from the streams of our deep model appropriately
in order to come up with even more discriminative features.
The output of the meta-learner is finally fused (i.e aver-
aged) with the average output of our deep model. Thus,
the proposed meta-learner is integrated in our deep model,
assisting in its optimization during the training phase. In
this way, we enhance the learning procedure and improve
the discrimination and generalization ability of the proposed
action recognition methodology.

3. Experimental evaluation

3.1. Datasets and evaluation settings

Four datasets are employed for the evaluation of our
methodology as shown below. The selection of these
datasets is based on their different characteristics (i.e types
of actions, number of joints, etc.) that pose challenges to a
general action recognition method. Furthermore, the small
size of two of these datasets introduces difficulties to the
training of a deep neural network that usually requires an
abundance of training samples.

UT-Kinect dataset [8]: This dataset consists of 10
actions performed twice by 10 different subjects. Each skele-
ton consists of 20 joints. For the evaluation of this dataset,
we follow the cross-subject test setting of [9], in which 10
folds are created, where half of the subjects are used for
training and the remaining half for testing.

Florence3D Actions dataset [2]: This dataset consists
of 9 actions performed two or three times by 10 different
subjects. Each skeleton consists of 15 joints. For the dataset
evaluation, we follow the cross-subject test setting of [9].

G3D Gaming Action dataset [18]: This dataset consists
of 20 actions performed three times by 10 different subjects.
Each skeleton consists of 20 joints. For the evaluation of this
dataset, we follow the protocol of [16], in which the first
instance of each action per subject is used for training and
the other two instances are used for testing.



TABLE 1. CLASSIFICATION ACCURACY ON MSRC-12 USING (A) CROSS-SUBJECT PROTOCOL [14] AND (B) MODALITY-BASED

“LEAVE-PERSONS-OUT” PROTOCOL [12].

Method Accuracy

ConvNet+JTM [14] 93.12%
Ker-RP [4] 92.3%
Cov3DJ [3] 91.7%

ELC-KSVD [6] 90.22%

Proposed 94.65%

(a)

Modality
Method

Sharaf et al. [7] Meshry et al. [11] Patrona et al. [12] Proposed

Video 0.669 ± 0.082 0.895 ± 0.068 0.927 ± 0.009 0.969 ± 0.069
Image 0.598 ± 0.082 0.858 ± 0.086 0.894 ± 0.010 0.944 ± 0.091
Text 0.558 ± 0.092 0.788 ± 0.139 0.851 ± 0.012 0.871 ± 0.165

Video-Text 0.684 ± 0.074 0.921 ± 0.126 0.983 ± 0.008 0.992 ± 0.024
Image-Text 0.687 ± 0.099 0.894 ± 0.085 0.905 ± 0.007 0.956 ± 0.089

Overall 0.639 0.871 0.912 0.946

(b)

MSRC-12 Kinect Gesture dataset [19]: This large
dataset consists of 30 actions performed by 12 subjects.
Each skeleton consists of 20 joints. For the dataset evalua-
tion, we follow two protocols; a cross-subject protocol [14],
where the odd subjects are used for training and the even
subjects for testing and a modality-based “leave-persons-
out” protocol [12], in which all but one subjects are used
for training and the remaining subject for testing for each
modality (i.e., video, image, text, video-text, image-text).
The ground truth annotation of this dataset is based on [3].

The skeleton sequences of all datasets are processed so
that they are composed of 64 frames either by removing
intermediate frames in the case of larger sequences or
by adding interpolated intermediate frames in the case of
smaller sequences.

3.2. Model parameters

The parameters that affect our proposed methodology
(i.e., size of layers, dropout, learning rate, etc.) are deter-
mined after experimentation on the UT-Kinect dataset and
kept fixed for the other datasets. In this way, we want to
point out the advantages of the proposed features and the
meta-learner on the performance of our methodology, no
matter which dataset is employed. More specifically, the
two-layer LSTMs consist of 1024 and 256 neurons and
dropout/recurrent dropout equal to 0.1 and 0.2 respectively.
Furthermore, the fully connected layers (FCs) that are fed
with the GPDs consist of 512 and 128 neurons respectively,
while the FC layer of the meta-learner consists of 128
neurons. The window size for the computation of GPDs is
halved in each subsequent level from 16 to 4 frames. Finally,
the network is implemented in Keras-Tensorflow framework
and trained using the Adam optimizer with batch size of 32
and learning rate equal to 0.0001.

3.3. Results

In this section, our proposed methodology is compared
with 15 state-of-the-art action recognition methods across
four datasets. Table 1 evaluates the performance of our
methodology on the large MSRC-12 dataset. It can be
observed that our method outperforms all other state-of-the-
art methods in both evaluation settings and in all modal-
ities, achieving a significant boost on the accuracy. More
specifically, our methodology improves the state-of-the-art

TABLE 2. CLASSIFICATION ACCURACY ON G3D DATASET. ALL

METHODS WERE TAKEN FROM [16].

Method Accuracy

Sh-LDS-HoGP [16] 90.75%
Restricted Boltzmann Machine 84%

Hidden Markov Model 77.4%
Conditional Random Fields 69.25%

Dynamic Time Warping 57%

Proposed 92.38%

TABLE 3. CLASSIFICATION ACCURACY ON UT-KINECT DATASET.

Method Accuracy

Lie Group [9] 97.08%
Histogram of 3D joints [8] 90.92%

Random forests [5] 87.9%

Proposed 97.69%

TABLE 4. CLASSIFICATION ACCURACY ON FLORENCE3D DATASET.

Method Accuracy

Lie Group [9] 90.88%
Multi-Part Bag-of-Poses [2] 82.00%

Proposed 91.12%

TABLE 5. EXPERIMENTATION WITH PROPOSED CONTRIBUTIONS ON

UT-KINECT DATASET.

Contributions Accuracy

HoGP [16] from 3D joint coordinates 68.55%
GPD from 3D joint coordinates 81.31%

HoGP [16] from joint-line distances 60.60%
GPD from joint-line distances 78.80%

Proposed without meta-learner 96.38%
Proposed with meta-learner 97.69%

results by 1.53% and 3.4% when the cross-subject and
modality-based “leave-persons-out” protocol are employed
respectively.

Similar performance improvement is noticed for the
other tested datasets as well, although their small sizes poses
challenges to the accurate training of our proposed deep
neural network. From Tables 3 and 4, it can be observed
that our methodology outperforms the Lie Group method by
0.61% and 0.24% on the UT-Kinect and Florence3D datasets
respectively. Moreover, Table 2 shows that our proposed
methodology outperforms the Sh-LDS-HoGP method and
other classification approaches by at least 1.63%, meaning
that the proposed features are more descriptive of the under-



lying actions of the G3D dataset than the HoGP features.
The superb performance of the proposed methodology

across all tested datasets reveals the splendid ability of the
meta-learner to weigh the different features in a way that
makes our method achieve similar performance irrespective
of the tested dataset. At this point, it is worth noting that
the hyper-parameters of the proposed deep network are kept
fixed after their optimization with respect to the UT-Kinect
dataset. As a result, we can conclude that the proposed
methodology generalizes well on other datasets without
requiring additional hyper-parameter tuning.

Finally, we analyse the effect of our contributions on the
classification accuracy of our proposed deep model on the
UT-Kinect dataset. From studying Table 5, we can observe
the huge boost on the classification accuracy of the proposed
deep network when the novel GPDs are employed. More
specifically, an improvement of 18.6% is observed when the
HoGP features are substituted with the GPDs extracted from
the 3D joint coordinates. A similar improvement is noticed
in the case of GPDs extracted from joint-line distances.
This means that the proposed GPDs are successful in their
task of enhancing the discrimination ability of the proposed
deep network. Finally, the introduction of the meta-learner in
the proposed deep network leads to a better exploitation of
the meta knowledge derived from the four network streams
and improves the classification accuracy of the proposed
methodology by almost 1.35%.

4. Conclusions

A novel skeleton-based action recognition method that
employs joint coordinates, joint-line distances and their
temporal representations through the use of the novel GPDs
is proposed in this work. A meta-learner that appropriately
combines the meta knowledge derived from the four streams
of the proposed deep network is also employed. Experi-
mentation on several well-known action recognition datasets
reveals that the proposed methodology achieves state-of-the-
art performance and demonstrates improved discrimination
ability across datasets with different sets of actions.
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