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Abstract — In this paper, a framework for protein-protein docking is proposed, which exploits both shape and 
physicochemical complementarity to generate improved docking predictions. Shape complementarity is achieved by 
matching local surface patches. However, unlike existing approaches, which are based on single-patch or two-patch 
matching, we developed a new algorithm that compares simultaneously, groups of neighboring patches from the 
receptor with groups of neighboring patches from the ligand. Taking into account the fact that shape complementarity 
in protein surfaces is mostly approximate rather than exact, the proposed group-based matching algorithm fits 
perfectly to the nature of protein surfaces. This is demonstrated by the high performance that our method achieves 
especially in the case where the unbound structures of the proteins are considered. Additionally, several 
physicochemical factors, such as desolvation energy, electrostatic complementarity, hydrophobicity, Coulomb 
potential and Lennard-Jones potential are integrated using an optimized scoring function, improving geometric 
ranking in more than 60% of the complexes of Docking Benchmark 2.4. 

Index Terms — protein docking, local descriptors, shape complementarity, physicochemical complementarity. 

——————————   Φ   —————————— 

1 INTRODUCTION 
ROTEIN-PROTEIN DOCKING has attracted increasing interest during the last years and still remains a hot 

research topic in Bioinformatics. It deals with the prediction of the conformation and orientation of one pro-

tein (ligand) within the binding site of another protein (receptor). Despite the extensive research in protein-

protein docking, a complete solution has yet to be achieved due to the large complexity of the problem. It has 

been proposed that shape complementarity alone cannot achieve highly accurate docking predictions [1]. 

Since geometric docking is based on approximate surface complementarity, a large number of false-positive 

predictions may occur. On the other hand, multiple physicochemical factors, such as Coulomb potentials, van 

der Waals forces, hydrophobicity, etc., can affect the docking predictions, but they need to be appropriately 

merged with a geometric docking approach. Last but not least, protein interactions can involve significant 

conformational changes, thus docking techniques should take into account the side-chain and the backbone 

flexibility. A computational method that will accurately predict protein-protein interactions and within a 

short time frame would become a valuable tool for biologists and biochemists. Successful docking will pre-

dict binding site amino acids crucial for the complex stability, which will assist biochemists perform concrete 

mutations in order to test their impact for the protein function. In industrial drug design, the economic im-

pact of protein-protein docking is very high, since an accurate and fast docking algorithm will enable rapid 
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scanning of structural data bases for matches with specific targets, which will speed-up the design process of 

new drugs and increase productivity. Thus, it is not surprising why protein-protein docking is still a very hot 

research topic and a lot of effort is put towards investigation of a more accurate computational docking solu-

tion, which is expected to provide additional insight into the nature of macromolecular recognition.  

1.1 Related Work  
Shape-based docking approaches can be classified into two main categories: brute-force scanning and local 

shape feature matching. The former consists of methods based on exhaustive scanning of the transformation 

space [2], [3]. These begin with a simplified rigid body representation by projecting the protein onto a 3D 

Cartesian grid; then, they distinguish grid cells according to whether they are near or intersect the protein 

surface, or are deeply buried within the core of the protein. Complementarity is computed by scoring the 

degree of overlap between pairs of grids in different relative orientations. To speedup this procedure, FFT-

based docking approaches have been introduced [4], [5], [6]. In [7], a method based on Spherical Polar Fouri-

er (SPF) is presented, which calculates rotational correlations using 1D FFTs. ZDOCK introduces a shape 

complementarity scoring function called Pairwise Shape Complementarity (PSC) [10], which computes the 

total number of receptor-ligand atom pairs within a distance cutoff. PSC does not rely on excaustive scanning 

of the entire rotational space resulting in low computation times. One of the most recent approaches of this 

category is presented in [34]. The so-called F2Dock is an extension of a NFFT-based docking algorithm, where 

an adaptive search phase (rotational and translational) has been incorporated to achieve faster running times. 

Since they are based on exhaustive scanning of translational and rotational space, brute-force methods are 

able to detect at least one near-native pose in almost every complex. On the other hand, this may lead to an 

extraordinary big number of candidate docking poses, where, due to the existence of false positives, the near-

native poses may not be ranked at the first positions. Such phenomena could be avoided with the use of local 

shape feature matching methods, which detect points of interest on the protein surfaces. These methods re-

quire a representation of the molecular surface, attempting to find critical patches on the surface. Then, pair-

wise complementarity matching is applied on these patches. In [8], a method based on geometric hashing is 

presented. Each protein surface is pre-processed to give a list of critical points (“pits”, “caps”, and “belts”), 

which are compared, using geometric hashing, to generate a relatively small number of candidate docking 

poses. The method requires low computation times, however, it does not produce very accurate predictions, 

since pits, caps and belts do not encode significant shape information. Context Shapes [9] extract local fea-

tures from the protein surface, which are boolean data structures and correspond to significantly large parts 
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of the protein surface. Complementarity matching is achieved using boolean operations. The method demon-

strates superior performance comparing with the previous one, however, the exhaustive search of relative 

orientations for each local feature increases the computational time and the memory requirements. In an at-

tempt to deal with the above limitations, in [35], a rotation-invariant shape descriptor is utilised, namely the 

Shape Impact Descriptor [39], to produce more accurate docking poses with lower computational cost. 

In [32], the method LZerD is introduced, which is based on 3D Zernike Descrptors (3DZD). These are a se-

ries expansion of a 3D function (i.e. protein surface) allowing for a compact representation of the 3D function. 

3DZD are extracted on local patches that are derived on uniformly distributed points of the protein surface. 

Partial matches are computed using geometric hashing. Surface Histograms (shDock) [33] is a local shape 

descriptor, which captures the local geometry around a set of two points with given normals on the surface of 

a protein. The docking pose is obtained automatically by matching two surface histograms. shDock has 

achieved the best performance among existing methods in Docking Benchmark 2.4, in the bound docking 

case, i.e. where the candidate proteins are taken directly from the crystallized complex. However, when deal-

ing with the unbound case, the performance of shDock decreases significantly.  

Since docking based only on shape complementarity does not provide the best possible results, other non-

geometric factors such as desolvation, hydrophobicity, and electrostatics have been also investigated [10], 

[19]. Recent attempts focus on combining geometric and physicochemical properties in order to produce 

more accurate predictions. In [20], shape complementarity matching along with knowledge-based potentials, 

electrostatics, atom desolvation energy, residue contact preferences and Van-derWaals potential are com-

bined, demonstrating remarkable results on a test set of 68 bound and 30 unbound test cases. Although the 

contribution of each individual non-geometric factor was not assessed in [20], an important conclusion can be 

drawn: shape complementarity should be combined with physicochemical complementarity to increase the 

accuracy of docking predictions. F2Dock [34] computes separately shape complementarity scores and elec-

trostatics scores and combines them. This leads to an improvement of shape-only docking in 54% of the com-

plexes of Docking Benchmark 2.0. The most straightforward way to incorporate geometric and non-geometric 

properties is to represent the final scoring function as a weighted sum of those factors and determine the op-

timal weights that each factor contributes to the overall scoring. Such an approach is presented in this paper.  

Towards the direction of improving existing docking approaches and investigating new approaches, the 

CAPRI experiment [40] (Critical Assessment of Predicted Interactions) has become an ideal arena for testing 

docking algorithms. More specifically, in CAPRI, new protein-protein complexes are subjected to structure 
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prediction before they are published. The complexes are submitted by several predictor groups and they are 

assessed by comparing their geometry to the original structure. Some of the most well-known docking algo-

rithms, such as PatchDock [8] and ZDock [10], have participated in CAPRI experiment producing acceptable 

solutions for several CAPRI targets [41][42].  

1.2 Method Overview and Contributions 
In Fig. 1, the block diagram of the proposed method is depicted. The PDB files [11] of the receptor and ligand 

proteins are given as input and their Solvent Excluded Surfaces (SESs) are extracted. Then, by computing the 

curvature of the SES, a set of critical points is extracted, which correspond to the centers of small elementary 

patches (either convex or concave). Each elementary patch is expanded in size in order to cover a wider area 

producing a Geodesic Surface Patch (GSP). For each GSP an appropriate local shape descriptor is extracted, 

which uniquely characterizes its shape. During complementarity matching, each GSP that corresponds to a 

convex (or concave) elementary patch of the receptor protein is matched with all GSPs that correspond to 

concave (or convex) elementary patches of the ligand protein. As a next step, several neighboring GSPs are 

grouped together to generate candidate binding regions on the surfaces of the receptor and the ligand. For 

aligning the two proteins, one candidate region of the ligand is aligned with respect to a complementary can-

didate region of the receptor using the Iterative Closest Point (ICP) algorithm. At the final step of the algo-

rithm, the aligned poses are scored using both geometric and physicochemical properties. The weights of the 

scoring function are optimized via training to achieve improved docking results. 

Receptor 
local 

descriptors

Ligand local 
descriptors

Extract Solvent 
Excluded Surface 

(SES)

Extract Critical 
Points from SES

Generate Geodesic 
Surface Patches for 
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Fig. 1. Block diagram of the proposed method 
 

Comparing the proposed SP-Dock (Shape-Physicochemical Docking) method with the approach presented 

in [35], both are based on local shape feature matching of surface patches corresponding to convex or concave 
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elementary shape patches. However, numerous novel features are introduced in SP-Dock, which are ex-

plained below. 

First of all, a more discriminative local surface descriptor has been adopted in SP-Dock for patch complemen-

tarity matching, instead of the Shape Impact Descriptor (SID) that was used in [35]. Some of the most well-

known local descriptors [22] were compared to SID in a dataset of known complexes to select the most ap-

propriate descriptor. The Local Spectral Descriptor [23] has been proven to be the most discriminative among 

others. 

Another notable innovation of SP-Dock is the group-based matching algorithm. It introduces a new approach 

for shape complementarity matching beyond traditional local shape feature matching techniques. It has been 

inspired by the fact that the shape complementarity between a pair of local surface patches (one from the re-

ceptor and one from the ligand), which correspond to a near-native pose, is mostly approximate rather than 

exact, while at the same time there are plenty of pairs of patches corresponding to non-native poses that have 

similar or even better shape complementarity than the near-native ones. Thus, existing local shape matching 

approaches, which rely on single-patch-to-single-patch or two-patch-to-two-patch complementarity match-

ing, may predict a large number of false-positive docking poses and fail to detect near-native poses. The ap-

proach presented in this paper intuitively groups neighboring patches from both the receptor and the ligand 

so as to create larger candidate binding regions. This increases the confidence of a receptor patch to be com-

plementary to a ligand patch, since, according to the grouping criterion, the neighbours of the receptor patch 

should be complementary to the neighbors of the ligand patch as well. The effectiveness of the proposed ap-

proximate complementarity matching is convincingly reflected in the unbound docking case where SP-Dock 

clearly outperforms similar docking approaches.  

Additionally, the paper proposes the adoption of the Iterative Closest Point (ICP) algorithm for fast alignment of 

the complementary candidate regions. ICP has been extensively used for surface registration in 3D reconstruction 

problems. Although 3D reconstruction involves alignment of surfaces with near-exact similarity, we prove 

that ICP is also appropriate for aligning surfaces with approximate similarity, as is the case of geometric 

docking. It is the first time, to the best of our knowledge, that ICP has been used for alignment of protein sur-

faces. It is also worth mentioning that surface similarity is equivalent to surface complementarity, if the sur-

face of the ligand is turned upside-down [35]. 

Finally, the paper assesses the contribution of physicochemical factors to achieve more accurate docking predictions. 

Several non-geometric factors, namely the Atom Desolvation Energy, Interface Residue Contact Preferences, 
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Generic Residue Contact Preferences, Electrostatic Complementarity, Coulomb Potential, Hydrophobicity 

and Van der Waaks Potential, were computed and combined with the geometric properties into a unified 

scoring function. These factors have been already discussed in previous works and are summarized in [20]. In 

this paper, the contribution of each factor is assessed and the optimal weight, with which each factor partici-

pates in the scoring function, is estimated using an appropriately selected optimization method. The im-

provement of docking predictions by combining the geometric with the physicochemical factors, in Docking 

benchmark 2.4, is impressive. 

As it is a local feature matching method, the proposed algorithm shares similarities with the well-known 

PatchDock method [8]. More specifically, the step of critical points extraction produces similar sparse surface 

representations for both PatchDock and SP-Dock (although a different algorithm is used in each case to ex-

tract the critical points). The geometric scoring step is also similar in both methods, since they generate a 3D 

distance grid around the receptor, which is accessed by the surface points of the ligand. On the other hand, 

their surface complementarity matching stages, which constitute core parts of the docking process, are com-

pletely different. First of all, SP-Dock does not rely on shape matching of the small convex and concave 

patches of the sparse surface, but it generates bigger surface patches (the GSPs), which cover a wider surface 

area around a critical point. These GSPs enclose more significant shape information than the local patches of 

PatchDock, which is important especially in filtering out a lot of false positive matches. Additionally, instead 

of the rather simple geometric features that describe the shape of a patch (or a pair of patches) in PatchDock, 

SP-Dock utilizes state-of-the art local shape descriptors, which makes the method more discriminative in 

terms of local complementarity matching. Then, in order to match multiple complementary pairs simulta-

neously and enhance the certainty of pairwise matches, the proposed SP-Dock method does not use geome-

tric hashing (as in PatchDock) but it introduces a new grouping algorithm. This algorithm groups intuitively 

pairs of complementary GSPs and allows for slight flexibility in the relative positions of the corresponding 

GSPs within a group. The latter increases the robustness of the method and makes it more appropriate for 

unbound docking cases, where slight side-chain flexibilities are allowed. The superiority of the proposed me-

thod over PatchDock is demonstrated in the experiments section, where SP-Dock outperforms PatchDock 

especially in the unbound case. 

The rest of the paper is organized as follows: in Section 2, the preprocessing phase is described, which in-

cludes the surface representation and extraction of local patches, as well as the local shape descriptor extrac-

tion for each patch. Section 3 analyzes the new group-based matching and alignment algorithm, while in Sec-
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tion 4 the geometric and physicochemical scoring procedure of the candidate docking poses is given. Con-

cerning the physicochemical scoring, the optimization process that assigns a set of weights for each physico-

chemical factor is provided. Then, in Section 5, the experimental results are presented, where the proposed 

method is compared to other existing docking approaches. Finally, conclusions are drawn in Section 6. 

2 PREPROCESSING  
This section describes the preprocessing procedure, which involves two phases: during the first phase, an 

appropriate representation of the molecular surface is generated from the input PDB file, a set of critical 

points is extracted and a GSP is created for each critical point. The second phase involves the extraction of 

low-level geometric descriptors for each GSP, which uniquely characterize its shape. 

2.1 Surface Representation and Extraction of Local Patches 
Extraction of 3D shape descriptors from a protein initially requires an appropriate representation of its 3D 

structure. Several representations have been proposed so far, namely the volumetric representation [7], the 

Solvent Excluded Surface (SES) [12], Sparse Surface [14] and Alpha Shapes [21]. In this paper, the SES method 

has been selected, which produces a 3D triangulated surface of the protein. In order to generate a SES, the 

Maximal Speed Molecular Surface (MSMS) [13] algorithm has been utilized. 

p

Geodesic Surface Patch (GSP)  

centered at the 

critical point  p

 

Fig. 2. A Geodesic Surface Patch (GSP) is centered at the critical point p. 
 

Computation of critical points on the SES offers a sufficient approximation of the protein surface and con-

stitutes a preliminary step that is followed by almost all the local shape feature matching approaches. In this 

paper, a method for generating critical points based on the local curvature of the surface has been followed. 

This approach has been introduced in [35], it is applied directly to the 3D triangulated mesh and it is applica-

ble to all types of triangulated meshes. The extracted critical points are the centers of concave and convex 
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regions of the molecular surface. A detailed description of the algorithm is available in [35]. 

For each critical point, a GSP is created (Fig. 2), which spreads over a wider surface area around that point. 

More specifically, a GSP consists of all points of SES whose geodesic distance from the critical point is less 

than a predefined threshold (Gmax). GSP differs from the Extended Surface Patch (ESP) that was defined in 

[35] in the sense that the latter uses the Euclidean distance as an initial threshold, while the geodesic distance 

is used only as a post-filter to remove unconnected surface parts. However, it was proven experimentally that 

the GSP-based approach achieves better accuracy than the ESP-based approach. It was also experimentally 

found that an optimal value for Gmax is 16Å. 

2.1 Local Descriptor Extraction 
In protein-protein docking problems, local-shape-feature-based methods rely on pairwise matching of local 

surface regions between the receptor and the ligand. The most complementary surface regions are, then, se-

lected as candidate poses. The approach presented in this paper uses shape similarity descriptors to measure 

surface complementarity. It has been proven in [35] that complementarity matching of surface patches can be 

reduced to a similarity matching problem, if the inner surface part of the ligand patches is treated as outer 

and vice versa. This concept is illustrated in Fig. 3, where a pair of complementary surface patches of the 

1CGI complex is depicted. In Fig. 3a and 4b, the outer parts of the surface patches are shown. In Fig. 3c, the 

inner part of the ligand patch is depicted. It is obvious that the latter patch has similar shape with the patch in 

Fig. 3a. 

In the approach presented in this paper, the GSPs of the receptor that correspond to convex (or concave) 

critical points are matched with the GSPs of the ligand that correspond to concave (or convex) critical points. 

The matching relies on the shape complementarity between the GSPs. Unlike the method in [35], where only 

the SID was used for shape similarity, in this paper, three local shape descriptors have been tested in order to 

find the most appropriate one for our problem. The most well-known local shape descriptors for 3D meshes 

have been presented in SHREC 2011 (Shape Retrieval Contest on Non-rigid 3D Watertight Meshes) [22]. Two 

local shape descriptors that achieved high accuracy in SHREC 2011 have been tested in our docking frame-

work and compared with the Shape Impact Descriptor. The selection of descriptors has been performed ac-

cording to the following criteria: 

Rotation Invariance: the local patches of the two protein surfaces have arbitrary orientations. In order to be 

matched, they should be either aligned or a rotation-invariant descriptor can be used. Alignment is usually 

based on the directions of the patch normals; however, the latter do not provide a robust measure, which 
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leads in inaccurate alignment. Rotation-invariant descriptors are able to match two surface patches irrespec-

tive of their pose. 

Compactness and fast extraction: local descriptors are applied to a relatively big number of surface patches. 

This implies that descriptor extraction and pairwise matching of single patches should be extremely fast. Fast 

matching is achieved by using very compact descriptor vectors (usually up to 100 values). Thus, shape de-

scriptors with high computational complexity are not appropriate in our case. 

Finally, the candidate shape descriptor should be applied to the surface of the protein, which automatically ex-

cludes descriptors based on the volume of a 3D object. The descriptors that will be described in the sequel, for 

the sake of completeness, fulfil all the above requirements. A more detailed description is provided for the 

first descriptor (Local Spectral Descriptor) since it is the one that has been eventually chosen. 

 

Fig. 3. a) a surface patch of the receptor of the 1CGI complex (large protrusion); b) a surface patch of the 
ligand (deep cavity); c) the patch of b) turned upside down so that the inner surface is visible. The 
patches in a) and c) have approximately similar shapes, thus, patches a) and b) are complementary. 

Local Spectral Descriptor 
This local descriptor has been proposed in [23] for retrieval of non-rigid 3D meshes. It is based on the extrac-

tion of geometric descriptors from a surface patch Pi centered around a sample point pi on the mesh. The me-

thod computes the Fourier spectra of the patch by projecting the geometry on the eigenvectors of the Laplace-

Beltrami operator (LBO). LBO is defined as the divergence of the gradient for functions that are defined over 

manifolds. The eigenvalues and eigenvectors of this operator satisfy the following equation: 

 k
k

k DhQh λ=−  (1) 

where kλ is the kth eigenvalue, kh is the kth eigenvector ],[ 1
k
m

kk HH K=h  and m is the total number of ver-

tices of the surface patch. D is the Lumped Mass matrix and Q is the Stiffness matrix that are described in 

[24]. In order to compute the kth spectral coefficient, the inner product between the patch surface and the kth 

eigenvector is calculated:  
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where xi is the x-coordinate of the ith vertex of the surface patch. Similar equations hold for ky~  and kz~ , 

which correspond to the y and z coordinates, respectively. Finally, the kth spectral coefficient is given by: 

 222 )~()~()~( kkkk zyxc ++=  (3) 

The Local Spectral Descriptor for patch Pi around point pi is the vector ],[ 1
i
n

ii cc K=c , where k=1,…n the 

first spectral coefficients. The dimensionality of the descriptor has been experimentally found to be n=50.  

ShapeDNA 
The ShapeDNA descriptor has been proposed in [25] for non-rigid shape analysis. It presents similarities 

with the Local Spectral Descriptor in the sense that they are both based on solving the eigenvalue problem of 

the Laplace-Beltrami operator. However, in ShapeDNA the descriptors are the first smallest N eigenvalues, 

which are the solutions of the Laplacian eigenvalue problem (1), while in Local Spectral Descriptors, the de-

scriptors are extracted by projecting the geometry of the surface on the eigenvectors of the Laplace-Beltrami 

operator. In general, a small number of egenvalues (10 to 15) provide a sufficient number of descriptors. In 

our experiments, N=14 was experimentally found to give the optimal results. A detailed description of the 

ShapeDNA descriptor is available in [25]. 

Shape Impact Descriptor (SID) 
SID was firstly introduced in [15] and extended in [39] as a shape similarity measure for 3D objects. The key 

idea of SID is the description of the resulting phenomena that occur by the insertion of the 3D object in the 

space. It is expected that similar objects will result in similar physical phenomena. Some obvious selections of 

surrounding fields are the traditional electrostatic force field and the Newtonian force field. Any 3D object 

can be considered as a distributed mass (or a distributed charge) with a specific distribution, resulting in a 

static field around it. SID is composed of three major histograms created by a) the field potential values, b) 

the field density Euclidean norms and c) the radial component of the field density, computed in points that 

are equidistant from the object surface. The computation of histograms involves only relative distances, thus 

the descriptor is rotation-invariant. A more detailed description of SID is available in [15], [39]. 

3 GROUP-BASED MATCHING AND ALIGNMENT 
Most of the existing local shape feature docking approaches are based on either one-patch-to-one-patch or 

two-patch-to-two-patch complementarity matching between the local patches of the receptor and the ligand. 
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Then, the most complementary pairs are aligned in order to produce the final poses as follows: a) for me-

thods based on single-patch matching [9], [35], the ligand is translated so that the patch center of the ligand 

patch coincides with the patch center of the receptor patch; b) for methods based on two-patch matching [8], 

[36], the ligand is translated so that its first critical point coincides with one of the receptor and then it is ro-

tated so that its second critical point coincides with the second critical point of the receptor. These approaches 

suffer from the following limitations: 

Alignment is not always accurate: the patch centers (critical points) of the receptor and the ligand do not al-

ways coincide with their real contact points, producing docking poses that may be far from the near-native 

poses. An approach that is usually followed is to increase the number of samples on the protein surfaces, 

which in turn dramatically increases the computation time. 

Low shape complementarity between surface patches: this is due to the fact that shape complementarity in pro-

tein surfaces is mostly approximate rather than exact (Fig. 4). This results in relatively low complementarity 

scores of patches that correspond to near-native poses comparing to scores of patches that correspond to non-

native poses, causing a high number of false positive predictions.  

Instead of applying single-patch or two-patch matching, in this paper, a novel approach is presented, 

where several neighboring GSPs are grouped together to generate candidate binding regions on the surfaces 

of the receptor and the ligand. This increases the confidence of a receptor patch to be complementary to a 

ligand patch, since, according to the grouping criterion, the neighbours of the receptor patch should be com-

plementary to the neighbors of the ligand patch as well. 

3.1 Creating groups of neighboring complementary GS Ps 
The steps of the group-based matching algorithm are summarized in Fig. 4. Let NR, NL be the GSPs of recep-

tor and ligand, respectively, and  i
RD  , i

LD  their corresponding local shape descriptors, where i=1,…NR (or 

NL). Let, also, the function that represents the convexity or concavity of a GSP be: 

 




−
=

GSP concave a is  if ,1

GSPconvex  a is  if ,1
)(

i

i
iCur  (4) 

 Each receptor GSP i is matched with all ligand GSPs j of different type ( 1)()( −=⋅ jCuriCur ). A dissimi-

larity metric is calculated for each pair (i,j) as: 

 ),(),( j
L

i
R DDdisjiityDissimilar =  (5) 

where dis() is an appropriate distance metric applied on the descriptor vectors i
RD  and i

LD . The distance 
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metric depends on the selected descriptor. In our experiments, the Manhattan distance (L1), the Euclidean 

distance (L2) and the diffusion distance [16] have been selected for matching of the Local Spectral Descriptors, 

the ShapeDNA descriptors and the SID descriptors, respectively. After computation of the dissimilarities, the 

GSPs of ligand are sorted with respect to similarity to the receptor GSP i and the k-first are selected to form a 

ranked list i
RRL . It is worth mentioning that similarity of the local descriptors is equivalent to complemen-

tarity as it was explained in Section 2.1.  

 

Fig. 4. The Group-based Matching algorithm. 
 

The output of the algorithm is a set of groups G, which is defined as follows: 

 },,,{ 21 MGGGG K=  (6) 

where )},(,),,(),,{( 2211 g
L

g
RLRLRk IIIIIIG K=  is a group that consists of the pairs ),( i

L
i
R II , i

RI is the index of 

a receptor GSP ( R
i
R NI K,1= ) and i

LI is the index of a ligand GSP ( L
i
L NI K,1= ). In order for the above 

pairs to form a group, the following grouping criterion must hold: 

 [ ]gji,gThresIId j
R

i
RGeod K,1      ),( ∈<  and 

 [ ]gji,gThresIId j
L

i
LGeod K,1      ),( ∈<  (7) 

where Geodd  is the geodesic distance between two GSPs of either the receptor or the ligand and gThres an 

INPUT: 
   NR, NL the GSPs of receptor and ligand, respectively 

   i
RD , i

LD  their local shape descriptors, i=1,…NR (or NL) 

OUTPUT: 
   },,,{ 21 MGGGG K=  the set of patch groups 

ALGORITHM: 
   Set {}←G  

   For each receptor GSP i   
      For each ligand GSP j   
         If 1)()( −=⋅ jCuriCur  

           Calculate ),( j
L

i
R DDdis  

      Sort GSPs of ligand 

      Keep k-first ligand GSPs and create ranked list i
RRL  

      For each ligand GSP j of i
RRL  

         For each group GGk ∈   

            If pair (i,j) fulfils Grouping Criterion for Gk 
               Then add pair (i,j) to Gk 
         If (i,j) not added to any group 
            Then create new group and add to G 
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appropriately selected geodesic threshold. 

(a) (b)

(d)(c)

 

Fig. 5. (a) and (b): a pair of complementary groups, one from receptor and one from ligand, respective-
ly, for the 1AVX complex. The first patch of the ligand is complementary with one patch of the receptor 
and the second patch of the ligand is complementary with three patches of the receptor. (c) and (d) the 
corresponding point clouds that are given as input to ICP for the alignment step. 
 

The candidate pairs of a group Gk are created by combining each receptor GSP i with the k most similar li-

gand GSPs, i.e. those included in the ranked list i
RRL . Consequently, a group Gk consists of neighboring re-

ceptor and ligand GSPs and each receptor GSP of the group is complementary with at least one ligand GSP of 

the group. This is illustrated in Fig. 5 (a) and (b). In Fig. 5 (a), the group of the receptor consists of four 

patches, whose centers are represented by blue spheres. Three of these patches are complementary with one 

patch of the ligand group, while the second patch of the ligand group is complementary with the fourth 

patch of the receptor. In general, the proposed grouping algorithm allows many–to-many correspondences of 

local patches increasing the confidence of complementarity between pairs of groups. 

The ranges of gThres and k values have been experimentally determined to be at the ranges of 4-6 Å and 8-

11, respectively. Higher values of gThres result in a smaller number of larger groups, while lower values of 

gThres result in a larger number of smaller groups. In the former case, the algorithm may fail to predict some 

near-native poses, while in the latter case, more false positive results may occur. Similar observations are 

made for k, if we decrease it (k<8) or increase it (k>11), respectively. For the experiments presented in Section 
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5, gThres=5Å and k=10 lead to the best results. 

The above process produces M groups, which will be given as input to alignment and final scoring func-

tion and will result in M predicted docking poses. There is no need to define an additional cutoff threshold, 

as required in [35] to select the first most complementary pairs of patches, since the average number of M is 

2500-3000, while the average number of the patch pairs in [35] is ~500000. Another advantage of the proposed 

grouping algorithm, comparing with the method in [35], is that patch pairs that lead to almost the same dock-

ing poses are not taken as separate cases but are grouped together (due to the neighborhood criterion). This 

results in a significantly smaller number of false positive predictions, which improves the final rank of the 

near-native predictions.  

3.3 Alignment of groups 
During the alignment phase, a rigid transformation of the ligand is computed for each of the M groups 

created using the group-based matching algorithm. Let i
RC  (or i

LC ) be the point cloud that consists of all 

points of the ith receptor GSP (or ligand GSP). The receptor point cloud k
RGC  of group Gk is given by:  

 
g
RR I

R
I
R

k
R CCGC UKU

1

=  (8) 

i.e. it is the union of the receptor point clouds i
RC  of the GSPs within group Gk. The ligand point cloud k

LGC  

of group Gk is computed in a similar manner. The required rigid transformation translates and rotates k
LGC  

so as to optimally fit to k
RGC . Then, the same rigid transformation is applied to the entire ligand molecule in 

order to compute the final score of the predicted pose. 

The optimal alignment of two point clouds is a surface registration problem. One of the most well-known 

techniques for surface registration is the Iterative Closest Point (ICP) algorithm [37]. Let 

{ }Rn
RRRRGC ccc ,,, 21

K=  and { }Ln
LLLLGC ccc ,,, 21

K=  be the two point clouds to be aligned, and i
R

j
L cc −  

be the Euclidean distance between point R
i
R GC∈c  and L

j
L GC∈c . Let also ),( R

j
L GCCP c  the closest 

point of RGC  to the point j
Lc . It is useful to launch ICP with an initial estimate T0 of the rigid transforma-

tion. This is usually computed by translating the median point of LGC  to coincide with the median point of 

RGC  and rotating LGC  so that its average normal (the average of the normals of all points j
Lc ) is aligned 

with the average normal of RGC . Then, an iterative process is repeated (t=1,…,tmax iterations) until conver-

gence. For the tth iteration, the set of correspondences is computed by: 
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Then, the new transformation tT  that minimizes the mean square error between point pairs in tCorr  is 

computed. In Fig. 5 (c) and (d), the point clouds that correspond to the pair of complementary groups (a) and 

(b) are depicted. These are given as input to ICP at the alignment phase. In Fig. 6, two results of alignment 

using ICP are provided for the 1AVX and 1HIA complexes. It is obvious that a highly accurate alignment is 

achieved. 

 

Fig. 6. Aligment results using ICP for the (a) 1AVX and (b) 1HIA complexes. A surface representation is 
used for the receptor and a backbone representation for the ligand. The blue line corresponds to the 
original position of the ligand and the magenta line corresponds to the pose predicted using ICP. 

4 SCORING OF CANDIDATE POSES 
In this section, the final stage of the proposed SP-Dock method is described, which involves scoring of the 

candidate poses that were produced during the group-based matching and alignment phase. Apart from the 

geometric complementarity, the effect of several (non-geometric) physicochemical factors on the accuracy of 

docking predictions is also investigated. The final scoring function is a weighted sum of the geometric score 

and the scores obtained from each separate physicochemical factor. The predicted docking poses are sorted in 

descending order, with the poses of the highest overall score to appear first in the ranked list. 

4.1 Geometric Scoring 
For the geometric scoring of each candidate pose, the 3D distance grid, which was presented in [35], is used. 

The receptor protein and its surrounding space is represented by a 3D function ( )kjiDT ,, : 

 ( )








>

<=

molecule  theoutside lies  voxel theif    ,0

molecule  theinside lies  voxel theif    ,0

 voxel theinside liespoint  surface oneleast at  if       ,0

,, kjiDT  (10) 

The absolute value of each voxel corresponds to the Euclidean distance from the closest surface point. 

Then, the distance grid is divided into 6 shells (Table I) according to the distance from the molecular surface. 

(a) (b) 
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The shell ranges have been experimentally determined. It is worth mentioning that the shell ranges are simi-

lar to the ones obtained by the PatchDock method [8] (with a 0.2 Å shift), which was expected since the geo-

metric scoring step is quite similar in both methods. 

Table I: The shells in which the distance grid is divided. 
 

Shell 1 [1.2, ∞) The range (in Å) of the first shell of the distance grid  
Shell 2 [-1.2, 1.2) The range of the second shell of the distance grid  
Shell 3 [-2.4, -1.2) The range of the third shell of the distance grid  
Shell 4 [-3.8, -2.4) The range of the fourth shell of the distance grid  
Shell 5 [-5.2,  -3.8) The range of the fifth shell of the distance grid  
Shell 6 [–∞,  -5.2) The range of the sixth shell of the distance grid 

a1-6 0, 1, -1, -18, -190, -10000 The values of the weights in the scoring function (13)  
 

For each of the docking poses predicted in the group-based matching and alignment phase, the translated 

and rotated ligand L enters the 3D distance grid of the receptor R. L’s surface points access the voxels of the 

3D grid and are assigned a value according to the distance from R’s molecular surface. The score SE of the 

transformation is given by: 

 ∑
=

=
6

1i
iiS NaE  (11) 

where Ni is the number of L points in shell i of the distance grid and ai is the weight of the i-th shell (Table I).  

After the ICP-based alignment step (Section 3.3), M different poses of the ligand are taken (equal to the M 

generated groups G). For the pose that corresponds to a group Gk, an additional refinement step is applied, 

which involves +/-2 Å translation of the ligand towards the direction of k
LGC ’s average normal (Section 3.3) 

and +/-25O rotation of the ligand around k
LGC ’s average normal. This results in a total of 9 poses for each 

group Gk, which is significantly faster than the method in [35] that requires 1872 different poses for each pair 

of complementary ESPs. The reason for taking only 9 poses is that the final transformation has been already 

approximated using ICP, thus, only a slight refinement is required. Taking also into account that ICP is sig-

nificantly faster than distance-grid-based scoring, the significance of ICP in our approach is obvious.  

The computation time required for the distance-grid-based scoring is proportional to the size and the reso-

lution of the ligand’s surface. In order to achieve low computation times, two different resolutions of the li-

gand SES are used: a) the low-resolution surface with point density of 1 point per Å2 and b) the high-

resolution surface with point density of 4 points per Å2. The low-resolution surface is used to score all 9 poses 

for each group Gk, and the high-resolution surface is used for the best among the 9 poses.  
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4.2 Physicochemical Factors Assessment 
Among the several non-geometric physicochemical factors that may affect the accuracy of protein-protein 

docking, the following have been assessed in this paper: 

Atom Desolvation Energy (ADE): the atomic contact potential, which is used to estimate the desolvation 

energy for the replacement of protein-water contacts with protein-protein contacts, is given by [26]: 

 ∑∑
= =

=
N

i

M

j
ijADE eE

1 1

 (12) 

where eij is the non-scaled contact value of a contact between atom i from receptor and atom j from ligand. 

The contact values are summed over all atoms of receptor that are within 6 Å distance to at least one atom of 

ligand and vice-versa. 

Interface Residue Contact Preferences (RCP): these are volume-normalized pair probabilities that represent 

the pairing preferences of aminoacids at the protein-protein interface [27]: 

 ∑∑
= = +

=
N

i

M

j ij

ij
RCP r

e
E

1 1 5.1
 (13) 

where eij is the volume-normalised pairing preference between aminoacid i from the receptor and aminoacid j 

from ligand and rij is the distance between their corresponding βC atoms. The value 1.5 has been added to 

avoid unrealistic close contacts. 

Generic Residue Contact Preferences (GCP): it is calculated in a similar manner as in the case of Interface Re-

sidue Contact Preferences. In this case, eij is the pairing probability of aminoacids in protein structures [28]. 

Electrostatic Complementarity (EC): the electrostatic complementarity at the interface is calculated by [29]: 

 ∑∑
= =

=
N

i

M

j
ijEC eE

1 1

 (14) 
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where ),( ji ppA  are statistical interaction energies, rij is the distance between atoms i,j, and rmax=4Å if both 

atoms are apolar and 3.4 Å otherwise. 

Coulomb Potential (CP): Coulomb potential is given by the following equation: 

 ( )2cr

qq
E

ij

ji
CP

+
=  (16) 

where qi, qj are the partial charges of each atom. The constant c is equal to 1.5 Å to avoid strong influence of 

very close atoms [30]. 



18 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 

 

Hydrophobicity (HP): it is calculated using the following equation [31]: 

 
hppphh

hh
EHP ++

=  (17) 

where hh is the number of contacts between hydrophobic atoms, pp is the number of contacts between two 

polar atoms and hp is the number of contacts between polar and hydrophobic atoms. 

Van-der-Waals Potential (vdW): here, the modified 6-12 Lennard-Jones Potential is calculated by : 
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where ijσ  is the sum of van-der-Waals radii and ijr  is the distance between atoms i and j. The potential is 

calculated for atoms with interatomic distances of less than 6 Å. 

It should be stressed that the above factors are not the only ones that affect the protein interactions. A va-

riety of additional physicochemical properties could be also found and integrated into a compound scoring 

function. An extensive survey on all possible factors is not within the scope of this paper, but it constitutes a 

significant challenge for future work. The factors presented above are also summarized in [20], where it is 

stated that they are able to improve docking predictions when merged with geometric docking. However, no 

information about the contribution of each separate factor is given in [20]. In this paper, an assessment of 

each factor is provided through an appropriate optimization method. More specifically, the overall score of 

each docking pose is given as the weighted sum of the geometric score (Section 4.1) and the scores of the fac-

tors described above. The weights are optimized on a training dataset (59 test cases of Docking Benchmark 

v1.0 [18]) using Particle Swarm Optimization (PSO) [38]. The overall scoring function is given by: 

 vdWvdWCPCPHPHPECECGCPGCPRCPRCPADEADEssTotal EwEwEwEwEwEwEwEwScore +++++++= (20) 

PSO is a global optimization algorithm, similar to a genetic algorithm, motivated by social behavior of or-

ganisms such as bird flocking and fish schooling. PSO iteratively tries to improve a candidate solution with 

respect to a given measure of quality (fitness function). PSO establishes a population (swarm) of candidate 

solutions, known as particles that move around in the search space, and are guided by the best found posi-

tions, updated when better positions are found by the particles.  

In our approach, the population of candidate solutions is the 8 weights w of (22), which can take arbitrary 
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real values within the range [0,1]. The values of scores E (22) have been normalized so that their value range 

is within [0,100]. The key of success of the PSO method is the selection of an appropriate fitness function. In 

our experiments, two fitness functions are determined. The first one is the Average Precision of the first-ranked 

hit for all the complexes of the training dataset. The Precision of the first-ranked hit for one complex is given 

by: 

 
retrievedretrieved

hit

nn

n
F

1
1 ==  (21) 

where hitn  is the total number of hits (i.e. near-native poses) that are retrieved and retrievedn  is the total num-

ber of predicted docking poses that are retrieved. If we select retrievedn  to be equal to the number of retrieved 

poses until the first hit is retrieved, then the numerator of (23) is equal to 1. As an example, if the first hit is 

retrieved in the fourth position, then the Precision for this complex is F1=0.25, or 25%. The Average Precision 

of the first-ranked hit provides an acceptable metric to be used as a fitness function, however, it suffers from 

the following limitation: it favors those complexes in which the first ranked hit is retrieved at the first posi-

tions (1 - 10), while the complexes, in which the first hit has rank >100, have insignificant contribution to the 

calculation of the Average Precision. In other words, an improvement of the hit’s rank from 200 to 100 contri-

butes with 0.01 to the average precision, while an improvement from 2 to 1 contributes with 1 to average pre-

cision. This is not desired since in the former case the improvement is much more significant and should con-

tribute more to the average precision. 

To overcome the above limitation a new fitness function was determined, which is given by: 

 ∑
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where CN  is the number of complexes of the training dataset, i
Srank is the rank of the first hit (of complex i) 

that is retrieved using only shape complementarity, i
SPrank  is the rank of the first hit using the weighted 

score (20) and i
PosesN  is the number of predicted poses of complex i. 

5 RESULTS AND DISCUSSION 
The proposed (Shape-Physicochemical) SP-Dock method was experimentally evaluated using the protein-

protein docking benchmark v2.4 [17], which consists of 84 known complexes (63 rigid-body cases, 13 cases of 

medium difficulty, and 8 difficult cases). To evaluate the performance of the method, for each complex, the 

receptor and ligand are separated from each other and the ligand is translated and rotated arbitrarily. In or-
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der to increase the confidence of the results, the docking algorithm has been repeated for three different ini-

tial rotations of the ligand. Eventually, we observed that these three arbitrary rotations produced only very 

slight modifications on the final poses (mainly due to the outcome of the ICP algorithm), which did not affect 

the final rankings. Thus, the result of only one of the three iterations (the first one) is presented in the follow-

ing subsections. The docking algorithm described in the previous sections is applied to generate a set of can-

didate poses of the ligand. The predicted pose of the ligand is compared to its original pose in the complex in 

terms of interface Root Mean Square Deviation (iRMSD): 

 
∑
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iN
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21
aa  (23) 

where p
ia  is the ith interface Ca atom (in x, y, z coordinates) of the ligand in the predicted pose and o

ia  is the 

corresponding Ca atom of the ligand in the original pose (crystallized complex). Interface Ca atoms of the li-

gand are those that are within the distance of 10 Å from the receptor. A predicted pose is called a hit if the 

iRMSD between the ligand in that pose and the ligand in the original complex is less than 2.5 Å.  

5.1 Evaluation of Local Descriptors and Physicochem ical Factors 
The choice of the appropriate local shape descriptor is crucial for the accuracy of the docking predictions. In 

Fig. 7(a), a comparison of the three shape descriptors of Section 2.1 is given. The diagram depicts the distribu-

tion of the ranks of the first prediction within 2.5 Å of the native complex structure. As an example, in the 

case of the Local Spectral Descriptor (blue column), the value of the first bin is 17, which means that in 17 out 

of 84 complexes of Docking Benchmark 2.4 the algorithm returned a hit at the first position. Similarly, the 

value of second bin is the number of complexes where a hit is predictred within the first five positions and so 

on. The value of the last bin is 76, i.e. in 76 complexes the algorithm returned a hit within the first 3600 posi-

tions, thus failed only in 8 cases. It is also clear from Fig. 7(a) that the Local Spectral Descriptor produces bet-

ter results than ShapeDNA and SID, thus it was eventually selected for our SP-Dock method.  

In Fig. 7(b), the effect of using physicochemical properties along with shape complementarity is demo-

strated. The red and green columns depict the ranks distribution in Docking Benchmark 2.4 using the unified 

scoring function of (20) optimized with the fitness functions F1 (21) and F2 (22), respectively. In both cases, the 

use of physicochemical properties improves the docking predictions of the shape-only approach. However, 

the weighted function optimized with F1 demonstrates better improvement at the first ranks (1-10), while the 

weighted function optimized with F2 is better at the higher ranks (100-2000). This makes sense taking into 
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account the fact that F1 favors those complexes in which the first ranked hit is retrieved at the first positions, 

as explained in Section 4.2. Eventually, the results obtained with the fitness function F2 were selected since 

they provide better overall improvement over the shape-only approach (65.3% improvement comparing with 

57.3% obtained with F1). 
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Fig. 7. Distribution of the ranks of the first prediction within 2.5 Å of the native complex structure for all 
test cases in Docking Benchmark 2.4, a) for different local shape descriptors and b) comparison of our 
method using only shape complementarity with our method using shape and physicochemical com-
plementarity and different fitness functions for weight optimization of the scoring function (F-1 is the 
precision of the first-ranked hit and F-2 is the function described in (22)). 

 

The weights of (20) that produced the results presented in Fig. 7(b) have been optimized by training on a 

dataset (59 complexes) of the docking benchmark v1.0 [18]. These weights for both F1 and F2 fitness functions 

are depicted in Table II.  

Table II: The optimized weights for each factor in (20) obtained by the two fitness functions and Particle 
Swarm Optimization. 

Fitness Function wS wADE wRCP wGCP wEC wHP wCP wvdW 

F1 0.114 0.158 0.008 0.006 0.143 0.01 0.05 0.51 
F2 0.231 0.013 0.007 0.005 0.104 0.079 0.047 0.512 

5.2 Comparison with PatchDock, ZDock, LZerD, shDock  and F 2Dock 
The results of the proposed method were compared to those of the following five methods: a) Local 3D Zer-

nike descriptor-based Docking (LZerD) [32], b) Surface Histograms (shDock) [33], c) Fast Fourier Protein-

Protein Docking (F2Dock) [34], d) PatchDock [8] and e) ZDock [10]. These are the most recent works related to 

geometric protein-protein docking and they have achieved the best docking accuracy reported so far. In our 

experiments, both R-bound/L-bound and R-unbound/L-unbound cases were evaluated. It is worth mentioning 

that the last two methods, PatchDock and ZDock, have participated in the CAPRI experiment, a well-

established arena for testing docking algorithms. 

(a) (b) 
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Two variations of the proposed method have been tested: the first (S-Dock) is based only on geometric 

properties, while in the second (SP-Dock), both shape and physicochemical properties are integrated as de-

scribed in Section 4.2. An analytic comparison of the proposed method with the other five methods, in the R-

bound/L-bound case, is available in supplemental material (Appendix 1, Table IX). Summing up the results of 

Table IXΣφάλµα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε., the proposed approach failed to return a 

hit in 8 out of 84 cases, while shDock failed in 10 cases, LZerD in 25, F2Dock (S) in 22, F2Dock (S-E) in 25, Pat-

chDock in 39 and ZDock in 23 cases. SP-Dock was ranked first in 40 out of 84 cases, far beyond the shDock 

method that was ranked first in 32 cases. In Table IV, the number of cases, where at least one hit is found at 

different docking thresholds, is presented for all methods. In the R-bound/L-bound results, the proposed SP-

Dock method outperforms all other five methods for thresholds 1, 1000, 2000 and 3600, while for thresholds 5, 

10, 100 only shDock outperforms the proposed method. In Table III, the win-tie-loss-failure records for the 

proposed method versus shDock, LZerD, F2Dock, PatchDock and ZDock is presented. Comparing our shape-

only approach (S-Dock) with shDock, S-Dock returns a better ranked hit in 31 cases, whereas shDock returns 

a better hit in 29 cases. The methods tie in 20 cases, and both fail in 4 cases. Comparing against LZerD, 

F2Dock (S), PatchDock and ZDock, the proposed method clearly outperforms them; it has 50-21 win-loss 

record against LZerD, 66-8 win-loss record against F2Dock (S), 54-17 win-loss record against PatchDock and 

56-21 win-loss record against ZDock (S). The accuracy of our method is further improved when shape com-

plementarity is merged with physicochemical complementarity (Table III). Note that S-Dock is compared to 

the shape-only version of F2Dock, while SP-Dock is compared to the F2Dock (S-E), where electrostatics are 

merged with the geometric properties. 

Table III: R-bound/L-bound: the win-tie-loss-failure records for the proposed method versus shDock, 
LZerD and F2Dock. 

S-Dock vs Win Tie Loss Both fail 
shDock 31 20 29 4 
LZerD 50 9 21 4 

F2Dock (S) 66 4 8 6 
PatchDock 54 9 17 4 

ZDock 56 4 21 3 

SP-Dock vs Win Tie Loss Both fail 
shDock 39 18 23 4 
LZerD 51 11 18 4 

F2Dock (S-E) 59 6 13 6 
PatchDock 58 11 11 4 

ZDock 60 6 15 3 
 

The above experiments have been performed using the bound molecules of both the receptor and the li-
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gand. In Table IV, the number of cases, where at least one hit is found at different docking thresholds, is pre-

sented also for the unbound case. In the R-unbound/L-unbound results, the proposed SP-Dock method is 

ranked first for all docking thresholds.  

In Table IV, the average iRMSD is also presented for both the bound and the unbound cases. The average 

iRMSD is calculated as follows: for each case that succeeds in finding a hit in the top 3600 predictions, the 

iRMSD of the best ranked hit is taken. For all these cases, the average iRMSD is computed. It is worth men-

tioning that the average iRMSD of the proposed method is greater (i.e. less accurate) than the iRMSD of the 

other methods in the bound case, while it is comparable in the unbound case. This can be explained by the 

fact that the proposed method provides an approximate estimation of the docking pose, while other methods 

provide more exact estimations. However, the approximate complementarity matching of SP-Dock allows 

identification of complementary pairs of patches even after small conformational changes (unbound dock-

ing). This is the reason why the proposed method performs better in unbound docking than other methods, 

while at the same time its iRMSD is not significantly affected (as it happens with the other methods).  

Table IV: Number of test cases where at least one hit is found for different thresholds (1, 5, 10, 100, 
1000, 2000 and 3600) and the average iRMSD, for both R-bound/L-bound and R-unbound/-unbound 
cases. 

 
PatchDock ZDock shDock LZerD F2Dock (S) 

F2Dock 
(S-E) 

S-
Dock 

SP-
Dock 

R-bound/L-bound 
Rank = 1 13 6 23 16 8 8 17 26 

Rank ≤ 5 15 11 37 20 10 13 25 31 
Rank ≤ 10 17 18 41 20 12 17 30 34 
Rank ≤ 100 28 37 57 39 23 33 51 56 

Rank ≤ 1000 39 48 67 56 46 52 73 75 

Rank ≤ 2000 41 54 69 58 55 57 75 76 

Rank ≤ 3600 42 55 74 60 62 59 76 76 

Avg, iRMSD (Å) 1.53 1.73 0.69 1.17 1.01 0.95 1.73 1.68 
R-unbound/L-unbound 

Rank = 1 0 2 0 1 1 1 2 2 

Rank ≤ 5 1 4 1 2 2 2 3 6 

Rank ≤ 10 1 5 2 2 2 2 9 11 

Rank ≤ 100 9 11 6 14 9 11 23 30 

Rank ≤ 1000 23 30 22 29 24 27 53 53 

Rank ≤ 2000 31 35 33 36 31 33 55 56 

Rank ≤ 3600 37 42 41 38 33 37 56 56 

Avg, iRMSD (Å) 1.76 1.84 1.89 1.87 1.57 1.59 1.88 1.84 
 

Similar conclusions can be drawn in the win-tie-loss-failure records (Table V). The proposed approach 

clearly outperforms all five methods, even in the case when only shape complementarity is used (S-Dock). If, 

instead of the geometric-only scoring, the shape-physicochemical scoring of (20) is used, the hit ranks are 

improved in 60.4% of the cases of Benchmark 2.4. The performance of all five methods for the unbound case 
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in Benchmark 2.4 is shown in Table VI. It should be stressed that the proposed SP-Dock method does not re-

turn a fixed number of docking poses. The number of docking poses corresponds to the number M of patch 

groups that was presented in Section 3.2 and it varies depending on the size of the interacting proteins. In 

case M>3600, only the first 3600 ranked poses are kept and presented in Table VI. In complexes where 

M<3600, all poses fulfill the constraint of “first 3600 predictions”, thus, all hits can be included in Table VI. 

Table V: R-unbound/L-unbound: the win-tie-loss-failure records for the proposed method versus 
shDock, LZerD and F2Dock. 

S-Dock vs Win Tie Loss Both fail 
shDock 47 0 18 19 
LZerD 46 1 19 18 

F2Dock (S) 51 0 13 20 
PatchDock 47 0 15 7 

ZDock 41 1 22 5 
 

SP-Dock vs Win Tie Loss Both fail 
shDock 49 0 16 19 
LZerD 50 1 15 18 

F2Dock (S-E) 47 0 17 20 
PatchDock 52 0 11 6 

ZDock 45 1 19 4 
 
Table VI: R-unbound/L-unbound: Comparisons between S-Dock, SP-Dock, LZerD, shDock and F2Dock 
on 84 test cases from Benchmark v2.4. PDB gives the PDB id for the protein complex. RMSD and Rank 
give the iRMSD and rank of the best ranked hit (2.5 Å cut-off). In 15 cases none of the four methods re-
turned a hit in the first 3600 predictions. 

 PatchDock ZDock LzerD shDock F2Dock (S) F2Dock (S-E) S-Dock SP-Dock 
PDB Rank RMSD Rank RMSD Rank RMSD Rank RMSD Rank RMSD Rank RMSD Rank RMSD Rank RMSD 

Enzyme–Inhibitor or Enzyme–Substrate 

1ACB – – – – – – – – – – – – 26 2.24 10 2.17 

1AVX 2053 2.22 2863 2.23 786 2.41 1199 2.5 1769 1.75 1909 1.75 122 2.21 97 2.21 

1AY7 679 1.14 – – 1884 1.98 733 1.56 94 0.87 32 0.98 37 2.15 83 2.15 
1BVN 110 1.68 502 1.97 27 2.32 82 2.15 72 1.58 54 1.58 6 1.65 5 1.65 

1CGI – – 145 2.44 – – – – 39 2.5 45 2.5 7 2.12 21 2.12 
1D6R – – 2951 2.03 2619 2.24 – – 177 1.45 170 1.45 634 2.19 449 2.19 
1DFJ – – 9 2.27 – – – – 243 1.15 22 1.14 – – – – 
1E6E 38 2.12 – – 52 2.13 1014 1.52 – – 3526 2.41 728 1.72 7 1.34 

1EAW 59 2.1 3 1.54 20 2.42 324 2.07 517 1.7 454 1.52 9 1.14 18 1.14 
1EWY 88 2.46 259 2.32 349 2.36 175 2.15 4 1.21 4 1.17 76 2.12 15 2.12 
1EZU – – 1100 1.94 824 1.21 784 2.24 – – – – – – – – 
1F34 30 1.57 5 2.2 – – 1528 2.14 98 1.34 60 1.34 1 0.72 1 0.72 

1HIA – – – – – – – – – – – – 49 1.93 336 1.93 
1KKL – – – – – – – – – – – – 4 2.13 8 2.13 
1MAH 1184 0.83 92 1.31 92 0.87 2252 2.13 – – 3327 2.07 1614 1.94 155 1.34 
1PPE 12 1.51 1 0.57 1 0.83 8 1.86 355 1.12 392 1.12 1 0.62 1 0.62 

1TMQ 3 1.16 314 1.88 50 1.45 186 1.18 247 1.63 241 1.63 225 1.56 5 1.56 
1UDI 261 1.55 258 2.17 59 2.36 – – – – 3043 1.74 25 1.56 25 1.56 

2MTA 1086 0.83 – – 606 1.64 2423 2.11 1378 1.58 1124 1.58 208 1.42 24 1.19 

2PCC – – – – – – – – – – 843 0.66 14 2.21 70 2.21 
2SIC 113 1.24 173 1.86 12 2.04 35 1.94 1072 1.79 1429 2.35 – – – – 
2SNI – – – – – – – – 362 1.92 377 1.92 72 2.15 51 1.98 

7CEI 241 2.49 106 1.97 – – 1515 2.05 1188 1.04 598 0.85 197 1.46 39 1.46 

Antibody – Antigen 

1AHW 168 1.3 268 2.28 5 1.34 1419 2.05 – – – – 319 2.29 269 2.29 
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1BVK – – – – – – – – 801 2.21 560 2.21 935 2.14 576 2.14 
1DQJ – – 2287 2.48 – – – – – – – – 933 1.32 1009 1.32 
1E6J 3483 2.29 15 1.56 439 2.18 3065 2.49 – – – – 631 2.21 83 2.12 
1JPS 1185 1.89 171 1.81 292 0.9 469 1.56 484 1.24 702 1.17 – – – – 

1MLC 847 0.98 110 1.19 1834 1.16 1027 0.96 – – – – 524 2.18 54 2.18 

1VFB 1541 2.48 2734 1.79 1303 1.69 207 2.23 310 0.75 213 0.75 611 2.09 526 2.09 
1WEJ 2152 1.25 465 2.37 – – – – – – – – 386 2.26 269 2.34 

2VIS – – 2747 2.49 – – 3027 1.45 – – – – – – – – 
Antigen–Bound Antibody 

1BJ1 – – 129 0.86 298 1.86 2052 1.58 – – – – 143 2.32 14 2.17 

1FSK 420 2.08 1 1.63 15 2.4 47 0.62 – – – – 46 0.91 64 0.91 
1I9R – – 50 2.45 95 2.39 302 2.48 2739 1.51 2090 1.51 71 2.28 96 2.28 
1IQD 3228 2.12 612 2.27 41 1.2 – – – – – – 374 2.13 75 2.13 
1K4C – – – – 1188 1.43 – – – – – – – – – – 
1KXQ 11 1.5 212 1.91 73 1.68 30 1.41 646 1.36 528 1.39 308 2.2 387 2.18 
1NSN 1254 1.76 185 1.96 945 2.29 1364 2.03 – – – – 179 2.01 115 2.01 

1NCA 575 1.45 14 1.93 – – 600 0.85 – – – – 232 1.21 257 1.21 
1QFW 1457 1.85 257 1.14 108 1.24 759 1.08 1372 1.34 1212 1.34 – – – – 
2JEL 1142 0.95 45 1.79 133 2.49 – – – – – – 83 2.16 9 1.89 

2HMI – – 237 2.5 – – – – – – – – – – – – 
Others 

1A2K – – – – – – 237 2.45 – – – – 13 2.21 27 2.21 
1AKJ – – – – – – 292 2.23 102 1.45 46 1.45 47 2.04 484 2.04 
1B6C 201 2.14 1717 2.43 1001 2.41 – – 1862 1.96 1687 1.96 172 2.06 159 2.06 

1BUH 625 2.37 – – – – 391 1.78 65 0.75 64 0.75 357 1.62 735 1.62 
1E96 – – 3094 2.26 216 2.14 3526 2.5 300 1.79 193 1.79 – – – – 
1F51 650 2.03 230 2.18 3545 1.58 3561 2.12 – – – – 79 2.21 154 2.21 
1FAK – – – – – – – – – – – – 993 2.11 146 1.87 

1FQJ 3004 2.46 – – – – – – 27 2.12 30 2.1 7 2.17 19 2.17 
1GCQ – – – – – – 1787 2.21 – – – – 681 1.93 231 1.93 

1GP2 – – – – – – – – – – – – 764 2.21 288 2.21 

1GRN 831 1.54 1704 2.34 1407 2.18 1724 1.61 1264 2.23 674 2.23 501 2.17 692 2.17 
1HE1 33 2.16 – – 267 1.98 3107 1.41 1 1.12 1 1.12 – – – – 
1HE8 – – – – – – 646 2.27 – – – – 1589 2.32 898 2.32 
1I2M – – – – – – – – – – – – 210 1.57 482 1.57 
1I4D – – – – – – – – – – – – 647 2.14 1186 2.24 
1IB1 – – – – – – – – – – – – 16 2.27 4 2.27 

1IJK – – – – – – 1639 2.42 2221 2.5 1426 2.43 – – – – 
1KAC – – 2896 2.33 655 2.18 138 2.38 747 1.67 672 1.67 8 2.12 5 2.12 

1KLU – – – – – – – – – – – – 2450 1.89 1861 1.67 

1KTZ – – – – – – – – – – – – 286 1.23 17 1.23 

1KXP 37 2.49 1734 2.36 – – 3 1.7 306 2.01 157 2.01 100 0.87 8 0.87 
1ML0 450 1.59 36 1.56 559 2.38 303 1.87 – – – – 714 1.92 522 1.92 
1QA9 3039 1.86 – – 1381 2.19 1264 2.16 – – – – – – – – 
1WQ1 – – 1101 2.49 141 1.87 – – 96 1.95 62 1.95 7 1.76 102 1.76 
2BTF – – – – – – – – – – – – 236 1.72 363 1.56 

2QFW 1018 1.68 832 2.29 68 1.55 – – 525 1.18 427 1.18 – – – – 
 

5.2 Computational Issues 
In Table VII, the average computation times for various tasks of the proposed approach are presented. The 

average time required for extraction of the Local Spectral Descriptor for a GSP is 0.1s. The time required for 

matching between a pair of GSPs (using the Local Spectral Descriptor) is ~ 0.001ms. It is obvious that descrip-

tor matching is 4108⋅ times faster than the geometric scoring based on distance grid, which demonstrates the 

importance of the Local Spectral Descriptor as a fast filtering stage.  
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Table VII: Average computation times for various tasks of the proposed approach 
Activity Average Computation Time 

Local Spectral Descriptor Extraction / GSP 100ms 
Complementarity matching of a pair of GSPs 0.001ms 

Scoring (distance grid) of a pose 86ms 
 

The average running time of SP-Dock is the sum of a) the time required for preprocessing and descriptor 

extraction; b) descriptor matching, grouping and alignment; c) distance-grid-based geometric scoring and d) 

physicochemical scoring. The most time-consuming parts are the geometric and physicochemical scoring, 

while the fastest part is the descriptor matching, grouping and alignment. The average running time for 

small-to-medium-sized complexes is approximately one hour (Table VIII), while it takes a few hours for large 

complexes. The running times for all complexes are given in Table X, in Appendix 2 of the supplementary 

material. The times reported in this paper were obtained using a PC with a dual-core 2.4 GHz processor and 

8GB RAM. 

 Although we did not run the other three methods, we compare our algorithm with the times reported in 

the related articles. As stated in [32], LZerD requires 1-2 hours for small proteins and it may take longer for 

larger proteins. These numbers were obtained using a computer with dual-core 2.1 GHz processor with 8 GB 

RAM, i.e. similar to the PC that we conducted our experiments. Thus, our approach is slightly faster than 

LZerD, while at the same time it clearly outperforms LZerD. In [33], authors use a computer with i7 quad-

core processor at 3.2GHz and 12GB RAM. The average running time for shDock is reported to be 2758s, i.e. a 

bit less than SP-Dock and LZerD. Taking into account the fact that in shDock a higher performance computer 

is used, it can be inferred that the average running time is comparable to SP-Dock and LZerD. Finally, in [34], 

no specific running time is reported for F2Dock. It should be stressed that the running time for SP-Dock in-

cludes also the time for physicochemical scoring, while in the cases of LZerD and shDock only geometric 

docking is considered. If we keep only the geometric part, our method becomes much faster than LZerD and 

shDock. On the other hand, if we use both shape and physicochemical properties, we produce much better 

docking results within approximately the same running time.  

Table VIII: Average running time of the proposed method  
Average Running Time 

Preprocessing/  
Descriptor extraction 

 Descriptor Matching, 
Grouping, Alignment 

Geometric 
Scoring 

Physicochemical 
Scoring 

Average Run-
ning Time 

300s 85s 1935s 1340s 3660s 

6 CONCLUSIONS 
We have presented a unified framework for protein-protein docking based on both shape and physicochemi-
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cal complementarity. For shape complementarity, a new approach has been implemented, which utilises an 

effective local descriptor. The so-called Local Spectral Descriptror is compact, fast to extract and capable to 

capture similatities of local surface patches. As a next step, multiple pairs of complementary local patches 

from the receptor and the ligand are grouped together using a new grouping algorithm. The above grouping 

algorithm was inspired by the observation that shape complementarity in protein surfaces is mostly approx-

imate rather than exact, thus single-patch or two-patch complementary matching generates numerous false-

positive predictions. Additionally, shape complementarity is enhanced by physicochemical complementarity. 

Several non-geometric factors were tested and their contribution to the improvement of the shape-only dock-

ing predictions was assessed. Particle Swarm Optimization was applied to train the weights that each factor 

contributes to the overall scoring function. The most significant improvement is achieved when Atom Desol-

vation Energy, Electrostatic Complementarity, Hydrophobicity, Coulomb Potential and van der Waals Poten-

tial are introduced along with the shape complementarity, while Residue Contact Preferences and Generic 

Contact Preference seem to have insignificant contribution. This was an initial selection of the most well-

known non-geometric factors. More factors that are available in the literature can be tested and assessed in a 

similar manner, which is planned for future work. 

The proposed method advances the state of the art mainly in the parts of local surface complementarity 

matching and alignment. The Local Spectral Descriptor provides a more robust measure for shape comple-

mentarity of local patches, while the new grouping algorithm enhances the certainty of a wider surface re-

gion of receptor to be complementary to a wider surface region of the ligand. Additionally, instead of supe-

rimposing the sparse points of the ligand on the matching points of the receptor, as it is the case with most of 

the existing local-patch-based docking approaches, the ICP algorithm used by SP-Dock achieves alignment of 

the two proteins by taking into account the overall shape of the complementary regions. While this feature 

provides less accurate poses (i.e. with higher iRMSD) in the bound case, it significantly improves the un-

bound case. The reason is that the surfaces of the two proteins at their binding interfaces have approximate 

complementarity in the unbound case. Thus, a method based on exact matching and alignment would prob-

ably fail to retrieve a near-native pose within the list of predicted poses, while a more approximate method, 

such as SP-Dock, is more likely to achieve a correct prediction. This is an interesting conclusion and could 

assist in further research in protein-protein docking by proposing ideas on how to deal with unbound dock-

ing and slight side-chain flexibility. Another advancement of SP-Dock is the new scoring process based on 

geometric and physicochemical factors. Several works have been presented so far dealing with the assess-
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ment of physicochemical factors but only few of them address both geometric and physicochemical comple-

mentarity. The proposed scoring of SP-Dock can be used as a starting point for further research, where the 

effect of additional factors, apart from Atom Desolvation Energy, Electrostatic Complementarity, Hydropho-

bicity, Coulomb Potential and van der Waals Potential, could be investigated. 

Results performed on the 84 complexes of the Docking Benchmark 2.4 demonstrate the superiority of the 

proposed SP-Dock method over five similar docking approaches. While in the case of bound complexes our 

method performs slightly better than the best docking methods reported so far, in the unbound case our ap-

proach clearly outperforms them. This confirms the assumption that shape complementarity should be ap-

proximate (not exact) in order to take into account small side-chain conformations on the protein surface. 

Additionally, when several physicochemical factors are introduced (SP-Dock), the shape-only docking pre-

dictions are improved in both bound and unbound cases.  Despite the improvements of the proposed SP-

Dock method presented above and the interesting conclusions regarding the protein-protein docking prob-

lem, there is still a lot of work to be done in this direction. In terms of accuracy, research should focus on the 

following two goals: i) to appropriately model the contribution of each factor (geometric or non-geometric) to 

protein interactions; ii) to appropriately model the flexibility (both side-chain and backbone) of the interact-

ing proteins. Existing methods have reached an acceptable level in terms of computation time, though not 

adequately modeling the flexibility. If a deeper analysis of the flexibility takes place, then the computational 

time increases prohibitively. This tradeoff between accuracy and computation time should be considered, 

until a method that will address both problems is proposed. 
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