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ABSTRACT This paper presents the 6th edition of the Drone-vs-Bird detection challenge, jointly organized
with the WOSDETC workshop within the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 2023. The main objective of the challenge is to advance the current state-of-the-art
in detecting the presence of one or more Unmanned Aerial Vehicles (UAVs) in real video scenes, while
facing challenging conditions such as moving cameras, disturbing environmental factors, and the presence
of birds flying in the foreground. For this purpose, a video dataset was provided for training the proposed
solutions, and a separate test dataset was released a few days before the challenge deadline to assess
their performance. The dataset has continually expanded over consecutive installments of the Drone-vs-
Bird challenge and remains openly available to the research community, for non-commercial purposes. The
challenge attracted novel signal processing solutions, mainly based on deep learning algorithms. The paper
illustrates the results achieved by the teams that successfully participated in the 2023 challenge, offering
a concise overview of the state-of-the-art in the field of drone detection using video signal processing.
Additionally, the paper provides valuable insights into potential directions for future research, building
upon the main pros and limitations of the solutions presented by the participating teams.

INDEX TERMS deep learning, drone detection, image and video signal processing, unmanned aerial
vehicles (UAV)

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs), commonly
known as drones, have gained immense popularity and

found diverse applications in recent years, encompassing
areas such as monitoring, environmental protection, support
to communication systems [1]–[3]. While their versatility
and capabilities offer numerous benefits, there is a growing
need for effective UAV detection systems due to the concerns
raised on various aspects, including security, safety, and
privacy [4]. The 2023 annual report of the Federal Aviation
Administration (FAA) of US reported multiple incidents
over the recent years [5], mainly caused by malicious or
suspicious usage, or inadvertent misuse of UAVs, proving
the severity and timely importance of the problem.

Detecting and identifying unauthorized drones can help
preventing potential threats, safeguarding critical infrastruc-
tures, and protecting individual privacy. The increasing uti-

lization of UAVs highlights the need not only for imple-
menting and regulating rules regarding drone flights, but
also for establishing effective UAV detection systems to
accurately localize intruders or unauthorized drones. For
instance, certain sensitive areas, such as airports, military
bases, government facilities, or nuclear power plants, require
heightened security measures. Similarly, critical infrastruc-
ture such as power plants, oil refineries, and telecommunica-
tions networks are crucial to the functioning of societies [6].

UAV detection systems play a crucial role also in ensuring
air traffic safety as the risk of collisions with manned
aircrafts also rises with the ever increasing number of UAVs
in the airspace [7]. By identifying and tracking UAVs,
authorities can implement appropriate measures to prevent
collisions, maintain the integrity of flight paths, and reduce
the potential for accidents or disruptions.
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UAVs have been misused also for various illegal activities,
including smuggling drugs, contraband, or weapons across
borders [8]. In this respect, UAV detection systems can aid
law enforcement agencies in identifying and apprehending
individuals involved in such activities. Rapid detection and
response enhance the effectiveness of border control opera-
tions, mitigating the risks associated with illegal trafficking.

The increasing need for high performing counter-drone
systems stresses the need for innovative approaches provid-
ing reliable automatic detection and identification of drones,
in a variety of environments and scenarios. In terms of
operational capacity, an effective detection system must be
able to detect threats from diverse drone types, including
custom-made and entirely new designs. Another challenge
faced by current systems is the adaptation to a new or
evolving environment (i.e. weather, sunlight, vegetation, sur-
rounding infrastructures, presence of birds) which can make
systems ineffective. Modern Counter-UAV systems build
upon a number of detection technologies (e.g. visual, RF,
radar, acoustic) [9], [10], to overcome specific challenges
and limitations of each individual modality.

While there is a lot of ongoing research on the sub-
ject from many different communities, e.g. [11]–[16], the
availability of datasets that can be exploited for training
UAV detection systems is rather limited. Some organizations
and companies may have proprietary ones. These datasets
may include real-world scenarios, proprietary detection al-
gorithms, and sensor data. However, access to such datasets
is typically restricted and may require partnerships or agree-
ments with the data owners.

In-house data collection provides the advantage of tai-
loring the dataset to specific needs and capturing data in
specific operational contexts, but it is an expensive and time-
consuming task in terms of equipment, regulations, privacy
preservation, and most importantly annotation. As a matter
of fact, capturing data utilizing diverse UAV types, under
different environmental conditions, including birds that may
interfere with the detection capabilities, is not possible for
most research teams.

Collaboration and data-sharing initiatives among industry
stakeholders, government agencies, and research communi-
ties can help increase data availability for UAV detection
system training. In this paper, we present the Drone-vs-Bird
Detection Grand Challenge, an initiative that combined data
capturing campaigns from European projects, in order to
offer to the research community a comprehensive dataset
on visual capturings of UAVs, manually annotated, aiming
to promote research on the domain. The Challenge focuses
on providing the means to advance the drone detection state
of the art (SoA), by seeking for innovative signal processing
solutions for video data sequences. Since the launching of
Drone-vs-Bird Detection Grand Challenge, numerous aca-
demic groups or companies have received the dataset, in
order to train or evaluate their own drone detection methods.
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FIGURE 1. General operational scenario of the Drone-vs-Bird Detection
Challenge.

The first edition of the International Workshop on Small-
Drone Surveillance, Detection and Counteraction Techniques
(WOSDETC) [17] was organized in 2017 as part of IEEE In-
ternational Conference on Advanced Video and Signal based
Surveillance (AVSS), held in Lecce, Italy. In conjunction
with the workshop, the grand challenge called Drone-vs-Bird
Detection Challenge was launched. In 2019, a second edition
of the challenge was organized, again as part of WOSDETC
and co-located with the 16th edition of AVSS held in Taipei,
Taiwan [18]. A third edition of the Drone-vs-Bird challenge
was organized in 2020, initially planned as part of the 17th
edition of AVSS in Washington DC, USA, but then run
as virtual event due to the COVID-19 pandemic [19]. The
fourth edition of the challenge was organized in conjunction
with the 17th AVSS in 2021 as a virtual event [20]. The
fifth edition of the challenge was held in conjunction with
ICIAP 2021 (May 2022) [21] in Lecce. The present work
extends the short (two-page) paper in [22] and provides a
more deep overview of the methodologies and outcomes of
the 6th edition of the Grand Challenge, which was held as
part of ICASSP 2023 on Rhodes Island, Greece.

A very high number of access requests to the dataset have
been filed since the challenge inception, by numerous teams
from various countries. This reflects the global reach and
popularity of the challenge, showcasing the widespread in-
terest and involvement of research communities from around
the world. However, it is worth noting that only a handful of
teams manage to submit valid results, confirming the general
difficulty of the detection task and the need of further re-
search and advancements in the topic. To offer a quantitative
summary, in the 2023 edition, we received approximately
100 requests for the dataset, had about 20 registrations for
the grand challenge, and received 8 successful submissions
by the deadline from 4 distinct teams.
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FIGURE 2. Examples of drone types present in the training set, i.e., Parrot
Disco, 2 custom fixed-wing drones, DJI Inspire, DJI Phantom, DJI Mavic,
DJI Matrice and 3DR Solo Robotics.

II. The Drone-vs-Bird Detection Challenge Dataset
In this section, we give a comprehensive description of the
dataset utilized for the Drone vs. Bird Detection Grand Chal-
lenge at ICASSP 2023. We begin by outlining its primary
attributes, including the diverse range of video sequences
encompassed, the various models of drones and disturbing
objects encountered, as well as the variability observed
within the considered scenes. Furthermore, we provide a
concise summary of other drone datasets freely accessible in
existing literature to offer a holistic perspective. Lastly, we
present a brief overview of the participation history, spanning
from the challenge’s first edition to the latest 2023 edition.

A. The Challenge Training Dataset
The Drone-vs-Bird Detection Challenge dataset encompasses
a diverse collection of 77 video sequences, serving as train-
ing data for all participating teams. This dataset has under-
gone progressive evolution over the editions of the challenge.
Initially, a portion of the videos was obtained through exper-
imental campaigns conducted within the SafeShore project1,
utilizing MPEG4-coded static cameras. These recordings
were subsequently augmented by additional sequences con-
tributed by the Fraunhofer IOSB research institute, sourced
from various locations across Germany. In 2020, the AL-
ADDIN project2 introduced 45 more videos, incorporating
the use of moving cameras for acquisition. Overall, the train-
ing dataset to date comprises a combination of sequences
captured with both static and moving cameras, featuring
diverse resolutions ranging from 720× 576 to 3840× 2160
pixels. Note that static cameras allow a straightforward
application of motion detection methods as initial detector
or in addition to appearance based detection methods, while
sequences recorded by moving cameras require a camera
motion compensation.

Each sequence contains an average of approximately 1,384
frames, with an average of 1.12 annotated drones per frame.
As illustrated in Figure 2, the dataset encompasses eight

1The project “SafeShore” has been granted funding from the European
Union’s Horizon 2020 research and innovation programme, with grant
agreement No. 700643.

2The project “ALADDIN” has been granted funding from the European
Union’s Horizon 2020 research and innovation programme, with grant
agreement No. 740859.

distinct types of commercial drones, including Parrot Disco,
DJI Inspire, DJI Phantom, DJI Mavic, DJI Matrice, 3DR
Solo Robotics, and two custom fixed-wing drones. Among
these, three types possess fixed wings, while the remaining
five exhibit rotary wings.

The training dataset is comprised of sequences provided
by different research institutes, which recorded their data at
different locations under varying conditions, thus offering
a large variety of scenes and backgrounds. It features the
presence of both static and moving camera sequences, of
different lengths, with frame characteristics changing also
within a same sequence (e.g., the camera may first point to
the sky but then follow the drone on the land, with trees
background or maritime scene or others). More specifically,
scenes include urban areas, woodlands, agricultural areas,
urban areas and rivers in Central Europe, maritime areas
as well as Mediterranean landscapes and cities, resulting in
varying levels of difficulty for the detection algorithms. A
diverse range of backgrounds is observed, including sky,
buildings, water surfaces, and different kinds of vegetation,
i.e., trees, grassland, bushes, and rocks. The dataset further
incorporates different weather conditions such as cloudy and
sunny, and different recording times such as daytime, dawn
and nighttime. Moreover, it encompasses challenges such
as direct sun glare and variations in camera characteristics,
as depicted in Figure 3. While drones are annotated in the
dataset, birds, often appearing as main disturbing objects,
specifically in more than one-third of the sequences, are not
annotated (further discussion on this point will be provided
in Sec. VI).

The distance between the drones and the camera exhibits
significant variability across and within the videos, leading
to considerable variations in drone sizes, as showcased
in Figure 4. The drone sizes range from as small as 15
pixels to over 1,000,000 pixels. The majority of annotated
drones have sizes less than 162 pixels or fall within the
range of 162 to 322 pixels. The presence of small-sized
drones poses a particularly challenging detection task. To
facilitate the training process, each video sequence is ac-
companied by a separate annotation file, available on GitHub
(at https://github.com/wosdetc/challenge). This file contains
information on the frames in which drones enter the scenes,
along with their precise locations expressed as bounding
boxes in the form of [topx topy w h]. In this notation, (topx,
topy) represents the coordinates of the top right corner, while
w and h indicate the width and height of the bounding box,
respectively. While drones are annotated in the dataset, birds,
often appearing as main disturbing objects, i.e. in more than
one third of the sequences, are not annotated.

B. The Challenge Test Dataset
The challenge test set encompasses an additional 30 video
sequences, for which no annotations are provided. Among
these, 16 video sequences are inherited from initial editions
of the challenge. Most of the locations depicted in these
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FIGURE 3. Sample frames extracted from the training videos showing the
large variability of the dataset.
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FIGURE 4. Distribution of drone sizes across the ground truth
annotations in the training dataset.

sequences are also present in the training set and exhibit
similar characteristics. To increase the difficulty, the test set
has been enriched with new video sequences that introduce
novel backgrounds and two distinct types of rotary drones.
Furthermore, the test set features the presence of additional
disturbing objects, such as planes, and includes scenarios
where drones are located against structured backgrounds, as
shown in Figure 5. To ensure a fair evaluation, sequences
exceeding 30 seconds in duration have been shortened to
prevent a few individual videos from dominating the whole
evaluation process.

As concerns the level of overlap between the training and
test sets in the Drone-vs-Bird dataset, it is worth highlighting
that most sequences in the test set are recorded at completely
unseen locations, whereas the remaining sequences that share
similar (but not identical) backgrounds with the training
set have been acquired using different perspectives and
recording times. The latter is indeed a common strategy

FIGURE 5. Sample frames extracted from the test videos showcase
notable differences compared to the training set.

to minimize the overlap in the datasets while balancing
the efforts necessary to conduct the acquisition campaign
(in some practical cases, in fact, changing to completely
different scenes may be not even possible due to constraints
on the movement of hardware equipment). Thus, the Drone-
vs-Bird dataset allows to assess the effectiveness of the
proposed detection methods (including, for instance, aspects
such as the generalization ability) with nearly-zero overlap
between training and test sets.

The dataset, including both the training set and the test
set, is openly available for download. However, to access
the dataset, interested individuals must first sign a Data
Usage Agreement (DUA) to comply with the terms and
conditions regarding the use and handling of the data. For
convenience, the annotations for the dataset can be accessed
at the following URL: https://github.com/wosdetc/challenge.

C. Other Drone Datasets
For the sake of completeness, we now review other publicly
available drone detection datasets, in comparison with the
Drone-vs-Bird dataset. It is important to note that datasets
based on other sensor modalities are not considered in this
overview, although some of the datasets may also include
EO (Electro-Optical) or IR (Infrared) imagery in addition to
(visible-light) video sequences.

The first dataset we discuss is the Drone Dataset: Amateur
Unmanned Air Vehicle Detection, released in 2019 [23]. This
dataset includes over 4000 images featuring DJI Phantom
drones. Images have a resolution between 300× 168 pixels
and 4k, and the dataset also comprises images with non-
drone objects.

The Small Target Detection database (USC-GRAD-
STDdb) [24] was built using 115 video segments downloaded
from YouTube. The frames have a resolution of 1280× 720
pixels, with specific annotations available for about 25,000
frames. They include more than 56,000 small objects, cate-
gorized as drones, birds, boats, vehicles, and people. Out of
the 115 video segments, 57 contain either drones or birds,
while the Drone-vs-Bird dataset specifically considers the
simultaneous presence of both drones and birds in the scene.
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TABLE 1. Attributes covered by the overviewed UAV datasets.

Several Variety of Different Possible Different Presence
Types of Back- Weather Moving Pixel of Birds or

UAV Models grounds Camera Sizes Other objects

Amateur UAV Detection Dataset [23] 7 3 7 7 3 7

USC-GRAD-STDdb [24] 3 3 7 3 3 3

Purdue UAV Dataset [25] 7 7 7 3 3 7

Flying Object Detection [26] 3 7 7 3 3 3

Real-World Object Detection Dataset [27] 3 3 3 3 3 7

Anti-UAV Challenge Dataset [28] 3 3 3 3 3 7

Multi-view Drone Tracking Datasets [29] 3 7 3 7 7 7

VisioDECT [30] 3 3 3 7 3 7

DUT Anti-UAV [31] 3 3 3 3 3 7

Halmstad Drone Dataset [32] 7 3 7 3 3 3

USC Drone Dataset [33] 7 3 3 7 7 7

Drone-vs-Bird 3 3 3 3 3 3

The Purdue UAV dataset [25] is a smaller dataset com-
prising only five video sequences, for a total of 1829 frames.
These video sequences were recorded using a custom air-
frame with a camera and have a frame rate of 30 frames per
second. Images have a resolution that is either 1920×1080 or
1280×960 pixels. Moreover, the annotations for the ground
truth are openly available for download.

Another dataset worth mentioning is the Flying Object
Detection from a Single Moving Camera dataset [26]. The
dataset consists of 20 video sequences, with each image
having a resolution of 752 × 480 pixels and containing,
on average, two similar objects that challenge the detection
task. The video sequences were acquired with a commercial
UAV mounting a standard camera, resulting in varying drone
appearances caused by changing orientations, lighting con-
ditions, and other factors. Furthermore, this dataset includes
20 video sequences featuring aircraft sourced from YouTube,
exhibiting image resolutions ranging from 640 × 480 to
1280× 720 pixels.

A more recent dataset is the Real World Object Detection
Dataset for Quadcopter Unmanned Aerial Vehicle Detection
[27]. This dataset encompasses an extensive collection of
51446 training images and an additional 5375 images specif-
ically allocated for testing purposes. The images themselves
were procured through a combination of internet downloads
and author-captured content, all adjusted to adhere to a
uniform resolution of 640× 480 pixels. Within the training
set, about 52,676 different instances of drones can be found.
Conversely, the test set is composed of about 2863 drone
instances, alongside 2750 images void of any drone presence.
To expedite the annotation procedure, an innovative semi-
automated labeling pipeline was effectively implemented.
Notably, within the training set, approximately 40.8% of

the drones are confined to dimensions smaller than 32× 32
pixels, while about 23.4% exceed the threshold of 96 × 96
pixels. In the test set, similar proportions reveal that about
36.3% of the drones are of smaller dimensions than 32× 32
pixels, while a noteworthy 28.3% surpass the dimension of
96× 96 pixels.

The Anti-UAV Challenge dataset [28] was released in 2020
as part of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Unlike the Drone vs. Bird
Detection Challenge, the Anti-UAV Challenge focuses on
the task of tracking a single object. The dataset consists
of a total of 160 video sequences, including IR and EO
imagery. The IR images have a resolution of 640 × 512
pixels, while the EO images have a resolution of 1920×1080
pixels. About 100 video sequences have been annotated,
serving as training data for tracking algorithms. The videos
were recorded through a rotating platform equipped with
a static camera. Consequently, the acquisition campaign is
limited only to a few selected scenarios. Additionally, this
dataset focuses on four specific drone types: DJI Inspire, DJI
Phantom, DJI MavicAir, and DJI MavicPRO.

On the other hand, the Multi-view drone tracking datasets
[29] were proposed to deal with the problem of reconstruct-
ing 3D flight trajectories, using as acquisition system an
ad-hoc network of cameras. These datasets consist of five
separate datasets. The first four datasets accounts for the
presence of an hexacopter captured with different cameras,
while the fifth dataset involves three different types of
drones. The datasets consider different acquisition setups,
with a number of cameras changing from 4 to 7. Moreover,
the flight duration varies between 2 and 10 minutes. In terms
of annotations, they are provided in the form of a single
point for the first four datasets. Compared to the Drone vs.
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Bird Detection Challenge dataset, these Multi-view drone
tracking datasets are smaller in size and lack the inclusion
of diverse environmental settings. Not least, they are tailored
for different goals, such as tracking of single objects or
reconstruction of 3D trajectories.

The VISIODECT dataset [30], released in 2022, com-
prises 20,924 sample images and associated annotations,
encompassing six drone models operating in three distinct
scenarios (cloudy, sunny, and evening), at various altitudes
and distances ranging from 30 m to 100 m. The data is
available in three different file formats (txt, xml, csv) and
was generated over 1 year and 8 months at 12 different
locations. Each video sequence was converted into JPEG
image frames with dimensions of 852 × 480 pixels. These
frames were organized and stored in repositories, each
representing a specific model class and scenario sub-class.
To enhance data quality, a teams of professionals cleaned
each repository by manually selecting image frames that did
not feature drones in the background. Data annotation was
conducted by manually delineating bounding boxes around
each image file, resulting in the creation of corresponding
label files. To maintain a consistent naming convention and
minimize errors, label files for each scenario sub-class were
named to align with their respective image files and stored
in repositories accordingly. Differently from the Drone-vs-
Bird dataset, the VISIODECT does not include sequences
acquired from moving cameras and does not account for the
presence of birds or similar objects.

Another very recent dataset is the Anti-UAV Detection
and Tracking from Dalian University of Technology (DUT)
[31]. The whole dataset divides in two separated subsets:
one for detection and the other for tracking. The detec-
tion dataset, which has a similar scope as the Drone-vs-
Bird, accounts for 10,000 images in total, in which the
training, testing, and validation sets have 5200, 2200 and
2600 images, respectively. All frames and images have been
manually annotated. Image resolution spans from 160× 240
to 3744 × 5616, offering a large variability in the UAV
sizes across different sequences. There are more than 35
different UAV models appearing in the detection dataset,
flying in outdoor environments including sky, dark clouds,
jungles, high-rise buildings, residential buildings, farmland,
and playgrounds. Compared to our Drone-vs-Bird dataset,
the DUT dataset mainly lacks the presence of birds or other
disturbing flying objects.

The Halmstad dataset represents another valuable source
of video sequences meant for UAV detection [32]. Data
have been captured at three airports in Sweden (Halmstad,
Gothenburg, and Malm) and comprise 650 video sequences,
including also some non-copyrighted material from the
YouTube channel “Virtual Airfield operated by SK678387”
used to enrich the target categories (mainly airplanes and
helicopters). The dataset features only 3 different types of
UAVs and all the videos have a resolution of 640×512 pixels,
and a total duration of 10 seconds each. The maximum

distance at which UAVs are captured from the fixed cameras
is about 200 m. Given the limited scenario considered for the
construction of the dataset (airports only), it does not provide
high variability in terms of scenes and weather conditions.

The USC Drone Dataset represents another freely-avilable
dataset specifically constructed for video-based object de-
tection and tracking [33]. It contains only 30 sequences,
all recorded at the USC campus. The sequences include
the presence of a single drone model but span a variety
of different backgrounds, different angles of acquisition and
variable weather conditions. The dataset has the objective
of capturing real UAV attributes such as fast maneuvering,
occlusions, and high illumination, just to mention a few. All
video sequences have a fixed resolution of 1920 × 1080,
with each individual video lasting approximately one minute.
To partially compensate for the limited variability in terms
of scenes and drone models, the dataset also uses model-
based data augmentation techniques that synthesize training
images and annotate location of each drone within frames
automatically.

In Table 1 we compare the major attributes of our dataset
against different datasets identified in the literature. From
experience in the field, a number of challenges can be iden-
tified, which need to be overcome for detecting drones “in
the wild”. The latter, in fact, are found i) of differing types,
shapes, sizes and models (varying from tiny to large ones),
ii) within a variety of backgrounds that may cause false
positives, iii) within varying environmental, weather and time
(day, dawn, sunshine, cloudy, dark) conditions, iv) using
stable footage or not, v) in videos of differing resolution
and drone sizes in pixels, vi) with the simultaneous presence
of other flying objects (e.g., birds) that might cause false
positives. Table 1 shows that indeed our proposed dataset is
the one that meets all the expected criteria.

III. Description of Tasks and Evaluation Metrics
A. Detection Task
The detection task of the Drone-vs-Bird Detection Challenge
2023 requires that participating teams submit a set of result
files. These files should encompass each video sequence,
with explicit indications of the frame numbers in which
drones were detected. Alongside the frame numbers, the
predicted position of the drones within the frame must
be provided in the same format of annotations, namely
bounding boxes denoted by [topx topy w h]. Additionally,
result files should include confidence scores for each frame,
aiding in the assessment of the algorithm’s uncertainty on
its predictions. In cases where a frame does not contain any
reported detections, it will be assumed that no drones were
detected in that particular frame.

While the use of additional training data is permitted,
teams must provide detailed descriptions regarding the quan-
tity and nature of the supplementary data employed. It is
essential for teams relying on additional data to submit an
additional result of their method, indicating the performance

6 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2024.3379073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



<Society logo(s) and publication title will appear here.>

Area of
Overlap

Area of
Union

FIGURE 6. Intersection over Union (IoU) metric that captures the
goodness in predicting a drone position in a frame.

achieved solely using the provided training data. However,
the ultimate evaluation and ranking for the challenge will
be based on the overall best score achieved, irrespective
of the utilization of additional data. The ultimate goal of
the algorithms should be to achieve precise and accurate
localization of drones, ensuring that the estimated bounding
boxes closely correspond to the actual UAVs positions.

B. Evaluation Metrics
The evaluation process for the Drone-vs-Bird Detection
Challenge employs the widely-adopted Average Precision
(AP) metric, which is commonly utilized in object detection
tasks such as the COCO object detection challenge. The
AP metric is based on the Intersection over Union (IoU)
criterion, which measures the overlap between the estimated
bounding box and the ground truth bounding box surround-
ing the UAV in the scene. The IoU is calculated as the ratio
of the area of overlap between the two boxes to the total
area of their union, as shown Figure 6.

To determine the accuracy of detections, a threshold
(typically 0.5) is applied to the IoU. If the IoU between
a detected UAV and a ground truth annotation exceeds
the threshold, it is considered a true positive detection.
Conversely, detections with an IoU below the threshold are
counted as false positives. Any ground truth annotations
that are not assigned to a detection are regarded as false
negatives, representing missed detections. By calculating
the area under the precision-recall curve, the AP metric
provides a comprehensive evaluation of a detector’s perfor-
mance, capturing the trade-off between precision and recall.
This single metric thus effectively summarizes the overall
precision-recall characteristics of each proposed algorithm. It
is important to note that the test sequences are made available
to participants one week prior to the submission deadline;
teams are requested to run their algorithms on these test
data and submit the results. Eventually, teams that realize the
performance of their algorithms are qualitatively inadequate,
typically withdraw from the challenge and refrain from
submitting any results.

IV. Drone Detection Algorithms
In the following the drone detection algorithms used for
submissions are briefly discussed.

OBSS AI (OBSS Teknoloji Ankara, Turkey) proposed a
drone detection framework that comprises an initial deep
learning based drone detector, a sequence classifier and
template matching. Based on their previous approach [21],
YOLOv5m6 [34] was employed as drone detection model.
The model was trained on four different drone detection
datasets to increase the models generalization ability. In
addition, a new synthetic drone detection dataset, which
consists of random background images and randomly placed
drone objects, was employed to improve the detection per-
formance in case of complex and unseen backgrounds. The
model was trained for 10 epochs using the default YOLOv5
training configuration, while the image scale was set to 1344
pixels. While an image based drone classification model
was utilized in their previous work to improve the detection
accuracy, OBSS AI modified this classifier to classify image
sequences [35]. For this purpose, an object tracker generated
tracks for detected objects. Then, eight instances of a track
were fed to a sequence classifier model, computing a drone
probability. This drone probability was combined with the
object detectors’ drone probability using geometric mean. To
train the classifier, a dataset was semi-automatically created
by using their detector and tracker to generate object tracks
from training video sequences. These tracks were exported
and manually labeled as drone, bird, and other. To overcome
missing detections in case of complex backgrounds, OBSS
utilized a template matching approach. Therefore, historical
data were stored for each tracked object. If the object
detector failed, a template matching algorithm was applied
near the last object location in a small search region, i.e.
image width / 10 × image height / 10. Predicted bounding
boxes were then fed to the sequence classifier model to
calculate the drone probability of the object.

IIT (Indian Institute of Technology Jammu) proposed a de-
tection scheme comprised of three stages. Initially, YOLOv7
[36] is applied as drone detection model, which was trained
on 60 videos from the Drone-vs-Bird challenge train set.
To reduce the number of false positive detections, detections
were filtered based on the confidence score in the subsequent
stage. For this purpose, IIT estimated the number of drones
n for each sequence and only considered the corresponding
n bounding boxes with the highest confidence scores. The
number of drones per sequence was derived from the number
of detections for each image throughout the entire sequence.
In the last stage, a CSRT tracker [37] was employed to
account for missed detections in complex environments. As
the tracker is less reliable than YOLOv7 in detecting accurate
bounding boxes, IIT proposed a scheme to fuse bound-
ing boxes estimated by both YOLOv7 and the tracker. If
YOLOv7 did not detect a drone, detections from the previous
frame were used to initialize trackers. Then bounding boxes
predicted by the tracker were used until detections become
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available again. To identify false positive detections, the IoU
between detections and the trackers bounding boxes was
used. If the IoU was less than 0.3, detections were considered
as false positive detections. Additional details can be found
in the ICASSP paper [38].

DU (Dongguk University, South Korea) adapted the
medium-size YOLOv8 [39] model for drone detection. To
account for various drone sizes, a multi-scale image fusion
(MSIF) [40] approach was employed. MSIF extracts features
for three different scales of the input image, which are
fused into one feature map through bottom-up and top-down
structures. The combined feature map was then used as input
of the YOLOv8 model. To improve the detection accuracy in
case of small drones, the P2 layer of the backbone was added
to the feature pyramid of YOLOv8 due to strong spatial local
features. DU further applied data augmentation to increase
the number of drone appearances in the training images. For
this, a copy and paste scheme [41] was employed. Cropped
and scaled drones were randomly located under the condition
that the new location did not overlap with an already drone-
occupied area. For training, every fifth frame of the Drone-
vs-Bird challenge train set was used and the image scale was
set to 640 pixels. The YOLOv8 model was trained for 93
epochs with a batch size of 16. For inference, the image scale
was set to 1280 pixels. Furthermore, DU applied horizontal
flipping and multi-scale augmentation. For more details, we
refer the reader to the ICASSP paper [42].

Note that all approaches are based on detection methods
applied on single images. Hence, no approach considers
motion based detection methods to identify possible drone
locations. However, OBSS employs temporal information by
using an additional tracker, which can be useful in case of
distant drones or complex backgrounds.

SNU (Shandong Normal University, China) adapted Single
Shot Multi-Box Detector (SSD) [43] as detection model.
To account for small drones, SNU added a shallow feature
pyramid network and attention module. For training, SNU
used images from the Drone-vs-Bird challenge train set and
set the image scale to 300 pixels. The interested reader is
referred to the ICASSP paper [44] for more details.

Team Average Precision

OBSS AI Submission 2 0.852
OBSS AI Submission 1 0.841
OBSS AI Submission 3 0.811
IIT Submission 1 0.450
IIT Submission 2 0.367
IIT Submission 3 0.357
Dongguk University 0.189
Shandong Normal University 0.121

TABLE 2. Results of Drone-vs-Bird Detection Challenge 2023.

V. Performance Assessment
A. Analysis of the results
The final ranking of the Drone-vs-Bird challenge 2023 is
reported in Table 2, showing the AP for each submission.
The winning entry was submitted by OBSS AI, which
substantially outperformed the other participating teams.

The AP values for each sequence are given in Ta-
ble 3. For this, we only considered the best submis-
sion from each team. OBSS achieved the best AP on
all sequences, exhibiting good detection results on most
sequences. However, poor AP values are obtained in
case of scenes with weak contrast between drone and
structured background, e.g. VID 20210606 143947 04 and
VID 20210606 141511 01. The detection results for IIT
clearly differ for the different sequences. While high detec-
tion accuracies are achieved on several sequences, all drones
are missed in other sequences. DU and SNU exhibit poor AP
values on most sequences, while good detection results are
only achieved for scenes with large UAVs and simple (non-
structured) background.

The number of submitted detections and overall recall are
given in Table 4. The test sequences comprise about 18000
annotated drones. While the number of detections submitted
by OBSS and DU exceed the number of annotations, IIT
and SNU submitted clearly less detections. Thus, OBSS
exhibits a high recall rate, whereas IIT and SNU show poor
recall rates. Though the high number of submitted detections,
DU achieved a poor recall rate, which indicates that most
detections are false positive detections.

The recall rate for each sequence are listed in Table 5.
OBSS exhibits good recall rates except for some sequences,
which comprise scenes with weak contrast between drone
and background. The recall rates for IIT clearly differ for
the different sequences. For some sequences, all drones are
correctly detected, while all drones are missed in other
sequences. DU and in particular SNU show numerous scenes
without any or only few detections.

Notice that static cameras allow a straightforward appli-
cation of motion detection methods as initial detector or
in addition to appearance-based detection methods, while
sequences recorded by moving cameras require a camera
motion compensation. Moreover, all approaches are based
on detection methods applied on single images; hence,
none of them considers motion-based detection methods to
identify possible drone locations. However, OBSS partially
exploits temporal information by using an additional tracker,
which can be useful in case of distant drones or complex
backgrounds.

To further analyze the detection results, we computed the
AP values and recall rates for different drone sizes (see Table
6 and Table 7, respectively). OBSS achieved the best AP
values and highest recall rates for all drone sizes. Though the
recall rate and AP increases with larger drones, OBSS shows
a high recall rate and good AP even for small drones whose
size is less than 162 pixels. The APs and recall rates obtained
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Sequence
AP

OBSS IIT DU SNU

GOPR5867 001 0.997 0.629 0.521 0.821
GH010037 solo split02 1.000 0.546 0.361 0.078
GH010039 matrice split02 0.964 0.000 0.000 0.000
GH010040 inspire split03 0.581 0.000 0.000 0.000
GH010045 phantom split01 0.942 0.561 0.623 0.000
VID 20220306 170118 01 0.734 0.643 0.077 0.000
VID 20220306 170541 01 0.994 0.932 0.057 0.000
VID 20220311 122209 01 1.000 1.000 0.000 0.000
VID 20210417 143217 01 0.939 0.018 0.000 0.004
VID 20210606 141511 01 0.477 0.032 0.041 0.000
GOPR5852 001 1.000 0.060 0.280 0.000
GOPR5861 001 0.998 0.613 0.606 0.436
VID 20211012 081448 01 0.945 0.759 0.000 0.000
2019 10 16 C0003 52 30 mavic 0.781 0.206 0.241 0.315
dji mavick mountain cross 0.891 0.496 0.000 0.000
dji phantom mountain 0.651 0.327 0.000 0.000
GOPR5843 004 0.923 0.675 0.867 0.000
GOPR5847 001 0.681 0.595 0.564 0.000
GOPR5853 002 0.659 0.145 0.266 0.000
GOPR5856 001 0.995 0.465 0.539 0.169
GOPR5862 001 0.996 0.455 0.620 0.744
GOPR5868 001 0.995 0.985 0.483 0.781
VID 20210606 141851 01 0.641 0.001 0.000 0.000
VID 20210606 143947 04 0.236 0.000 0.000 0.000
VID 20211010 143610 01 0.997 0.994 0.733 0.117
VID 20211012 175158 02 0.938 0.638 0.770 0.000
4k 2020-06-22 C0006 split 01 01 0.698 0.000 0.001 0.000
4k 2020-07-29 C0020 01 0.981 0.490 0.914 0.000
4k 2020-07-29 C0021 01 1.000 1.000 0.803 0.000
VID 20210417 143930 02 0.861 0.390 0.011 0.105

TABLE 3. Detailed comparison for each team in the Drone-vs-Bird Detec-

tion Challenge 2023. The AP is given for every sequence of the test set.

Team #Detections Recall

OBSS AI Submission 2 38175 0.906
IIT Submission 1 11854 0.486
Dongguk University 30471 0.392
Shandong Normal University 2912 0.133

TABLE 4. Number of detections and recall.

by IIT are in the same range for different UAV sizes, yielding
the best results for drone sizes in the range between 162 and
322 pixels. While the recall rates for DU are similar for
different drone sizes, the AP values are worse for smaller
drones. This indicates that more false positive detections are
caused in case of small drone sizes. The results for SNU
show that only large drones are detected, whereas all small
drones are missed. One reason for this is the used image
scale, which results in clearly down-scaled input images, so
that small drones only comprise a few pixels.

Sequence
Recall

OBSS IIT DU SNU

GOPR5867 001 1.000 0.683 0.522 0.834
GH010037 solo split02 1.000 0.547 0.529 0.108
GH010039 matrice split02 0.970 0.000 0.000 0.000
GH010040 inspire split03 0.696 0.000 0.000 0.000
GH010045 phantom split01 0.973 0.566 0.730 0.000
VID 20220306 170118 01 0.776 0.643 0.287 0.000
VID 20220306 170541 01 0.998 0.936 0.255 0.000
VID 20220311 122209 01 1.000 1.000 0.000 0.000
VID 20210417 143217 01 0.970 0.044 0.000 0.007
VID 20210606 141511 01 0.574 0.056 0.202 0.000
GOPR5852 001 1.000 0.195 0.368 0.005
GOPR5861 001 0.998 0.613 0.624 0.472
VID 20211012 081448 01 0.970 0.774 0.000 0.000
2019 10 16 C0003 52 30 mavic 0.872 0.266 0.280 0.368
dji mavick mountain cross 0.923 0.541 0.000 0.000
dji phantom mountain 0.752 0.358 0.000 0.000
GOPR5843 004 0.945 0.686 0.908 0.000
GOPR5847 001 0.690 0.595 0.582 0.000
GOPR5853 002 0.754 0.145 0.280 0.000
GOPR5856 001 1.000 0.474 0.567 0.253
GOPR5862 001 1.000 0.545 0.649 0.755
GOPR5868 001 1.000 0.987 0.487 0.828
VID 20210606 141851 01 0.700 0.025 0.011 0.000
VID 20210606 143947 04 0.759 0.011 0.000 0.000
VID 20211010 143610 01 1.000 0.995 0.799 0.117
VID 20211012 175158 02 0.968 0.667 0.876 0.000
4k 2020-06-22 C0006 split 01 01 0.814 0.002 0.058 0.000
4k 2020-07-29 C0020 01 0.988 0.676 0.958 0.000
4k 2020-07-29 C0021 01 1.000 1.000 1.000 0.000
VID 20210417 143930 02 0.868 0.391 0.167 0.110

TABLE 5. Detailed comparison for each team in the Drone-vs-Bird Detec-

tion Challenge 2023. The Recall is given for every sequence of the test set.

Team
AP

< 162 > 162& < 322 > 322& < 642 > 642

OBSS 0.756 0.760 0.834 0.908
IIT 0.485 0.544 0.444 0.473
DU 0.114 0.130 0.290 0.216
SNU 0.000 0.000 0.003 0.289

TABLE 6. AP for different drone sizes.

Team
Recall

< 162 > 162& < 322 > 322& < 642 > 642

OBSS 0.843 0.909 0.883 0.925
IIT 0.549 0.630 0.464 0.387
DU 0.398 0.402 0.418 0.370
SNU 0.000 0.000 0.014 0.310

TABLE 7. Recall for different drone sizes.
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OBSS Team IIT Team

DU Team SNU Team

FIGURE 7. Error analysis using the COCO evaluation toolbox [45]. For each team, a series of precision recall curves (PRCs) is given. C75 is the PRC for
an IoU of 0.75 to accept detections as true positives, while C50 is the PRC for an IoU of 0.5 as used within this challenge. Loc depicts localization errors.
For this, the IoU criterion is set to 0.1. BG shows false positive detections caused by the background and FN illustrates the remaining false negatives.

A detailed analysis of the occurring errors is given in
Figure 7. A series of precision recall curves (PRCs) is
given for each team. C75, C50 and Loc are the PRCs
for IoU thresholds of 0.75, 0.5 and 0.1, respectively. Due
to the less strict IoU threshold, Loc depicts inaccurately
localized detections. BG points out false positive detections
caused by the background, while FN shows remaining false
negative detections. For OBSS, the remaining errors are
caused by inaccurate localization, false positive detections
due to background clutter and missed detections, while no
error source clearly dominates. The main error source for
IIT is missed detections. One reason for this could be the
applied filtering scheme, as several drone detections might
be filtered out. In addition to the high number of missed
detections, DU exhibits numerous false positive detections
caused by the background. This indicates that the applied
model is not able to accurately distinguish between drones
and clutter objects. For SNU, the errors are mainly due to
false negative detections. As already discussed one reason for
this is the inappropriate down-scaling of the input images.
The high numbers of missed detections for IIT, DU and

SNU indicate the poor generalization ability of the applied
models. In contrast to OBSS, these teams considered only the
Drone-vs-Bird challenge train set and no additional datasets
for training. However, the test set comprises multiple scenes
with partially complex backgrounds, which are unseen dur-
ing training and thus, may cause missed detections due to
unexpected appearances of drones. This indicates that most
approaches are robust only in case of sequences comparable
with those in the training set, e.g. drones with the sky as
background, while performance may significantly change
in case of variations in the UAV sizes and complexity of
the background, as structured background often yields weak
contrast to drones. Considering that the best performance
have been obtained by using additional datasets for training,
it is apparent that the diversity in the training data plays an
important role for both adaptability and generalizability.

Examples of qualitative detection results for all teams are
given in Figure 8 and Figure 9. Note that only detections with
a confidence score above 0.5 are considered. In case of large
drones and unstructured background, all approaches achieved
good detection results (see Figure 8). However, small drones
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as well as drones in front of background are only detected
by OBSS and IIT or only by OBSS. In case of more
complex backgrounds or weak contrast between drone and
background, all approaches have issues to correctly detect
drones. Besides more diverse training data or novel data
augmentation techniques, the usage of temporal information
could be beneficial for such scenarios.

B. Discussion
The 6th edition of the Drone-vs-Bird challenge involved the
participation of four distinct research teams. The analyses
and results reported in Section V-A clearly demonstrated
that the algorithm proposed by the OBSS team significantly
outperformed the approaches proposed by the other partic-
ipating teams over all the sequences provided in the test
set. From a more technical point of view, the superiority
of the detection framework proposed by OBSS can be
ascribed to its ability to mitigate effects introduced by
mobile cameras and to detect distant drones. Although all
the teams applied only appearance-based detectors on single
frames without considering more extended motion informa-
tion, OBSS inserted a tracking approach in the processing
loop that helped the proposed method to identify with high
probability the presence of drones even in case of small
and blurry appearance. Moreover, the drone detection model
used by OBSS was trained on four different drone detection
datasets to increase the model generalization ability and was
further augmented with a synthetic drone dataset that lead
to improved the detection performance in case of complex
and unseen backgrounds. On the other hand, the methods
proposed by IIT, DU and SNU teams could be considered
effective only for sequences with simple (non-structured)
backgrounds and with large drones appearing at same instant.
When facing scenes with more complex backgrounds or
smaller drones, all the methods from IIT, DU, and SNU tend
to exhibit a too high number of missed detections, while the
method proposed by OBSS is able to limit the number of
miss detections or false alarms, though at the price of a
reduced AP.

Overall, for the case of large drones and unstructured
background, all approaches achieved satisfactory detection
results. However, small drones as well as drones in front
of backgrounds are detected by OBSS and, only in part, by
IIT. All approaches suffered in case of more complex back-
grounds or weak contrast between drone and background.
One of the primary difficulty arises from managing mobile
cameras and detecting distant drones. Another important
aspect to highlight is that most of the algorithms do not
explicitly incorporate birds in a supervised manner during
the design phase due to the absence of annotated bird data.
Consequently, instances where multiple birds are present in
test sequences (including scenes with entire flocks) tend
to result in increased false alarms across all methods, as
birds share small visual characteristics with small (distant)
UAVs. Not least, the majority of the models adopted by

the participating teams were trained on a few different
real and synthetic datasets, thus exhibiting a rather poor
generalization capability.

VI. Conclusion
This paper presented an overview of the outcomes from
the 6th edition of the Drone vs Birds Detection Grand
Challenge at ICASSP 2023. The four methods proposed
by the participating teams exhibit distinct design elements,
leading to a complementary set of interesting aspects. No-
tably, the primary difficulties arise from managing mobile
cameras and detecting distant drones. Another important
aspect to highlight is that most of the algorithms do not
explicitly incorporate birds in a supervised manner during
the design phase due to the absence of annotated bird data.
Consequently, instances where multiple birds are present in
test sequences (including scenes with entire flocks) tend
to result in increased false alarms across all methods, as
birds share small visual characteristics with small (distant)
UAVs. Incorporating bird targets into the training dataset
has been proved a challenging and labour-intensive task. In
drone tracking footage, birds appear as small and blurry
flying objects, often not easy to be identified in single
images as bird without utilising motion information within a
sequence. Furthermore, in case of flock of birds, annotation
would be a very time-consuming task, that cannot promise
a satisfactory accuracy. Addressing this issue necessitates
devising strategies to integrate bird data, particularly given
the visual similarity between distant fixed-wing UAVs and
birds. It should be also kept in mind that the goal is
drone detection, not classification of the rest of the scene.
Designing a method for more general object detection and
classification would lead to a different approach for future
extension of the challenge, incorporating an additional class
representing birds at the design stage, as well as other classes
for similar flying objects (e.g., airplanes). To this aim, a
first step could be to annotate birds only in videos where
their appearance is evident enough both for the sake of
annotation and useful training of the detection method, which
also makes it possible to consider the adoption of semi-
automatic annotation tools. Additionally, videos solely of
birds (available on the Internet) could be used to train a
method with bird appearance features. Another possibility
would be to generate videos with drones and birds, by
augmenting a drone video with synthetically generated flying
bird(s). This would alleviate the hassle of bird annotation, but
requires to construct suitable methods for realistic bird flights
generation. All such aspects warrant further exploration and
will be a focal point in upcoming editions of the Drone vs.
Bird Detection Challenge.

More generally, understanding the main factors that con-
tribute to the evident performance variations exhibited by
each algorithm across different sequences is an important di-
rection of further research, in particular for what concerns the
ability to cope with arbitrarily-complex backgrounds. Future
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FIGURE 8. Qualitative examples for OBSS AI (green), IIT (red), Dongguk (blue) and Shandong (yellow) showing good detection results in case of large
drones and unstructured background.

editions of the challenge could also incorporate additional
assessments: besides the mentioned multi-class extension,
other performance aspects such as computational efficiency
(including real-time capabilities) could be investigated. The
use of a shared Docker container installed on a remote ma-
chine (e.g., using one of the cloud facilities) could be a viable
solution to compare the runtime of the proposed algorithms
on the same hardware platform and assess whether they are
suitable for real-time implementation. The latter is expected
to evolve into a crucial requirement in the future editions of
the challenge, given the increasing importance of promptly
detecting drones as a fundamental prerequisite for modern
UAV detection systems.

In conclusion, all the inquiries above aim to unravel the
intricate trade-offs inherent in the multitude of approaches
and methodological combinations adopted for drone detec-
tion based on video signal processing, contributing to a
deeper understanding of their underlying mechanisms and
highlighting, at the same time, the most promising research
directions.
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