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Abstract—In this paper, a novel Tensor Factorization and tag
Clustering (TFC) model is presented for item recommendation
in social tagging systems. The TFC model consists of three
distinctive steps, in each of which important innovative elements
are proposed. More specifically, through its first step, the content
information is exploited to propagate tags between conceptual
similar items based on a relevance feedback mechanism, in
order to solve sparsity and “cold start” problems. Through
its second step, sparsity is further handled, by generating tag
clusters and revealing topics, following an innovative tf · idf
weighting scheme. Furthermore, we experimentally prove that
a few number of expert tags can improve the performance of
quality recommendations, since they contribute to more coherent
tag clusters. Through its third step, the latent associations
among users, topics and items are revealed by exploiting the
Tensor Factorization technique of High Order Singular Value
Decomposition (HOSVD). This way the proposed TFC model
tackles problems of real world applications, which produce noise
and decrease the quality of recommendations. In our experiments
with real world social data, we show that the proposed TFC
model outperforms other state-of-the-art methods, which also
exploit the Tensor Factorization technique of HOSVD.

Index Terms—Social tagging, recommender systems, relevance
feedback, content based information retrieval, expert tagging.

I. INTRODUCTION

SOCIAL tagging [11], is a process that allows users to
annotate a set of items like photos (Flickr [17]), songs

(last.Fm [18]) or web sites (del.icio.us [16]), in order to facil-
itate their sharing, discovery and retrieval. These annotations
are in the form of free keywords also known as social tags,
through which users can express their personal opinion to
describe items. This is very important, since the complex
multifaced information of items like images, videos, etc. can
be exploited and social tagging systems are able to generate
personalized recommendations, by allowing users to pose tags
as queries. In particular, the collaborative-based mechanism
of such systems functions as follows: users having the same
tagging behavior tend to get similar recommendations. There-
fore, such recommender systems are often characterized as
“item collaborative filtering in social tagging systems” [35].

Despite the benefits of social tagging, several important
problems produce noise [51] and reduce the recommendation
accuracy. These problems are the following:
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• Due the free nature of tags, polysemy and synonymy are
very common problems, since tags are subject to multiple
interpretations.

• “Learning tag relevance” [27], [28], [49], is the problem
of how to interpret the relevance of a user-contributed tag
with respect to the visual content the tag is describing.

• The “cold start” problem [14] refers to the fact that users
participate rarely in the tagging process and thus there are
only a few tags on which to base the recommendation.

• Sparsity in social tagging systems affects the recommen-
dation accuracy. Specifically, since item recommendation
in social tagging is collaborative-based, high accuracy
is achieved only if users annotate the same items with
similar tags (users having the same tagging behavior).
However, this is extremely difficult in the case of real
world applications. A huge amount of social tagging data
is generated with users having similar taste on topics
and not on exact items and therefore the quality of
recommendations is decreased.

• With the introduction of tags, the usual binary relation
between users and items turns into a ternary relation
between users, items and tags. This ternary relation is
mapped to a tripartite network [12], [24], [46], [54],
which should be considered by recommender systems,
in order to capture the latent associations among users,
tags and items.

A. Background and Motivation

According to [35], expert tagging is a possible solution for
the aforementioned problems, which usually relies on a small
number of domain experts, who annotate resources based on
structured vocabularies. The main advantages of using experts’
opinions are: (a) the resulting well agreed tag vocabulary and
(b) the accurate annotations. However, the disadvantages are
(a) the time needed for the manual annotation, and (b) the
limited vocabulary that must be used.

In order to capture the ternary relation among users, tags
and items in social tagging systems, previous works like [41],
[50], [55], focused on generating recommendations based on
tensor factorization (TF) techniques [6], [22], [25], [53]. Such
methods are able to (a) solve problems like polysemy and
synonymity, (b) preserve the ternary relation, (c) reveal the
latent associations among users, tags and items, (d) reduce
the noise in social tagging systems, (e) provide more accurate
recommendation compared to methods that suppress the 3-way
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relationship to 2-way like the one in [52] and (f) generate
efficient recommendations in terms of run times, since the
recommendations only depend on the smaller factorization
dimensions after applying the TF method [35]. The aforemen-
tioned works do not solve sparsity and the cold start problem,
thus, in [38] content information is exploited by performing tag
propagation in similar items. However, the main disadvantage
of the method in [38], is that the proposed tag propagation
cannot be uncontrolled. More precisely, by allowing extensive
tag propagation, the noise that incurs may affect the quality
of recommendations due to the irrelevant tag assignments
to items. In order to constrain the amount of propagated
tags, a threshold parameter is controlled, based on the items
similarity. However, the fundamental problem in this approach
is the “learning tag relevance”, since tag propagation between
similar items can be performed only if they belong to the same
concept. Simultaneously, a lot of work has been conducted
concerning relevance feedback recommender systems [15],
[20], [29]. Such approaches identify items that belong to
the same concept. Nevertheless, the tag dimension is always
omitted.

Additionally, since item recommendation in social tagging
systems is collaborative filtering-based, the quality of recom-
mendations is directly affected by sparsity. This is due to
the fact that high recommendation accuracies are achieved,
under the condition that users have the same tagging behavior.
However, in the case of real world applications users have sim-
ilar taste upon topics. Regarding methods for revealing topics
and generating recommendations in social tagging systems,
several works have been presented. Such methods aim at tag
clustering, in which tags are clustered to reveal a topic [9],
[10], [32] [37], [40], [47], [57]. However, these methods do
not handle the problems of sparsity and “cold start”, which
result in inaccurate recommendations.

B. Contribution and Layout

In this paper, the Tensor Factorization and tag Clustering
(TFC) model is presented for item recommendation in social
tagging systems. The TFC model consists of three steps and
through each step the aforementioned problems are success-
fully handled. The first step of the proposed approach involves
tag propagation by exploiting content, so as to face the issues
of sparsity, “cold start” and “learning tag relevance”. The
proposed step is based on a relevance feedback mechanism,
in order to perform tag propagation between similar items
only if they belong to the same concept. Consequently, the
TFC model is able to propagate less noisy tags, since tags of
annotated items are propagated only to relevant items. The
TFC model is validated in an image collection and as we
experimentally prove, the method of [38] is not sufficient
for image recommendation based on social tags, since the
issue of “learning tag relevance” is ignored. To the best
of our knowledge we are the first who exploit relevance
feedback mechanisms in TF, which increase the accuracy of
recommendations.

The second step of the TFC model is tag clustering in order
to reveal topics and identify the taste of users in these topics.

By doing so, the sparsity problem is handled, by transforming
tags to tag clusters, in order to further increase the accuracy
of recommendations. We evaluate our proposed method by
performing two different tag clustering algorithms. The first
one presented in [32] takes into account the tripartite network
and the second one is an adapted version of K-Means in the
social tagging systems for tag clustering. Through exhaustive
experimental evaluation we conclude to the optimal number of
tag clusters - topics for both tag clustering methods, without
considering the information of image classification, as authors
in [32] do. After producing tag clusters, an innovative tf · idf
weighting scheme is followed to calculate users’ interests and
identify image relations to topics (tag clusters). Additionally,
to generate even more coherent tag clusters and consequently
better recommendations, we exploit tagging of few experts,
by considering the fact that finding them is a time consuming
process. We show experimentally that the proposed tag clus-
tering step of the TFC model alleviates the performance of
collaborative filtering based TF methods, since the discovered
topics form the basis of recommendation. The personalized
interest in topics is captured by the proposed tf ·idf weighting
scheme.

The third step of the proposed method is based on the TF
technique called High Order Singular Value Decomposition
(HOSVD) [25]. We show that the cubic complexity of HOSVD
is minimized by reducing the number of tags to tag clusters,
by also preserving the benefits of TF techniques. The inno-
vation in this step is that, by exploiting HOSVD the latent
associations among users, topics and images are revealed. In
our experiments we evaluate the TFC model against the TF
model presented in [50], and the TF model in [38], which
exploits content to solve sparsity.

The rest of the paper is organized as follows, after sum-
marizing related work to the proposed model in Section II,
we describe the proposed TFC model in Section III. Our
experimental results on real-world social tagging data from
our image collection in Section IV provide evidence about the
effectiveness of the proposed approach. Finally, we draw the
basic conclusions of our study in Section V.

II. RELATED WORK

The related works are divided into four parts according
to the contributions of this paper: (a) recommender systems
based on relevance feedback, (b) collaborative filtering in
social tagging systems, (c) tag clustering methods for revealing
topics and generating recommendations and (d) approaches
exploiting expert tagging.

A. Recommender systems based on Relevance Feedback

Relevance feedback approaches have been used in several
recommender systems, such as YourNews [1], Fab [2] and
NewT [48]. Such systems try to recommend items similar to
those a given user used in the past. In particular, the basic
process of recommendation includes matching of the attributes
of a user’s profile in which preferences and interests are stored,
in order to recommend to the user new interesting items
[30]. The main difference between relevance feedback-based
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recommender systems and collaborative-based recommender
systems in social tagging, lies in the fact that relevance
feedback-based recommendation systems try to recommend
items similar to those a given user used in the past, by
storing the information of interest through the relevance
feedback mechanism, whereas systems designed according
to the collaborative recommendation paradigm identify users
whose preferences are similar to those of the given user and
recommend items they have liked. Additionally, recommender
systems based on relevance feedback omit the tag dimension,
thus, the complex multifaced information of the items cannot
be exploited and as a result the quality of the recommendations
is decreased.

B. Collaborative Filtering in Social Tagging Systems

In [31], the iFind model was proposed, which exploits the
semantic contents of images in addition to the extracted low-
level features. However, the user dimension in the tripartite
social network was omitted along with the respective per-
sonalized recommendation. Tso-Sutter et al. [52] examined
the generic problem of item recommendation in collaborative
tagging systems. They proposed a generic method that allows
tags to be incorporated to traditional two-way recommender
algorithms, by reducing the three-way correlations to two-way
and then, they applied a fusion method to reassociate these
correlations. The widely used technique of Latent Semantic
Analysis (LSA) [8] has been used as a solution for addressing
the problems of synonymity, polysemy, and noise in social
tags [26]. LSA reveals latent structures in the data by using
matrix factorization techniques, based on the Item-based al-
gorithm [44]. Such techniques became a popular choice for
implementing collaborative filtering in social tagging systems
and a survey can be found in [23]. Nevertheless, the matrix
factorization techniques ignore the three-way correlations be-
tween users, items and tags, which reveal the personalized
perception of users about particular items.

To address the requirements of collaborative tagging sys-
tems such as the ternary relation, new approaches have been
proposed. Regarding methods that model the social tagging
data with tensors, Xu et al. [55] proposed a method that rec-
ommends tags by using ternary analysis and Symeonidis et al.
[50] exploited HOSVD either for item or tag recommendation.
In [41], authors investigated the ternary association among
users, items and tags for more effective tag recommendation
using the tensor decomposition technique called Pairwise
Interaction Tensor Factorization (PITF). Their method is ex-
tremely promising, since they reduced the cubic runtime of
tensor factorization to linear and is applicable for midsized
and large data sets. The PITF technique explicitly models the
pairwise interactions between users, items and tags to provide
more accurate tag recommendations. However, it cannot be
readily adapted to item recommendation due to the different
nature of tag recommendation and item recommendation. Tag
recommendation aims at predicting the use of tags of a given
user on a given item, with two entities predefined, whereas
item recommendation aims at predicting the “satisfaction” on
items, with only the user specified. Generally speaking, item

recommendation is more challenging than tag recommenda-
tion, because less information is known about the subject to
receive the recommendations.

C. Tag Clustering for Generating Recommendations
Several tag clustering methods have been proposed in the

literature for recommender systems. Clustering is an offline
step that is performed independently from the personalized
recommendation algorithm. The discovered tag clusters form
the basis of the recommendation algorithm. In [3], a tag graph
was built based on the co-occurrence of tags in annotated
items. A spectral bisection method was adopted to cluster
the tag graph. The identified tag clusters were used for find-
ing semantically related tags. In [9], [10], several clustering
techniques were evaluated such as maximal complete link,
K-Means, and hierarchical agglomerative clustering. In [47],
Shepitsen et al. proposed a recommendation system based on
hierarchical clustering of the tag space, using user profiles
and tag clusters to personalize the recommender results. Zhou
et al. [57] proposed an extended language model based on
Latent Dirichlet Allocation (LDA) for information retrieval.
This model incorporated the topical background of documents
and social tags, as well as users’ domain interests. In [40],
authors incorporated social tags into two clustering methods:
K-Means and a generative clustering method based on LDA.
Although their work proved the value of tags as an additional
information source for clustering, the user dimension was
omitted.

In [37], a spectral clustering method was presented for
capturing the three dimensions in social tagging data and
combining multiple values of similarity to get groups of related
items, in order to provide recommendations. In [32], the
tripartite network was exploited to generate user, item and tag
clusters simultaneously. Yet, in both works tag propagation
based on content was not exploited and therefore sparsity and
“cold start” problems remained unsolved.

D. Expert Tagging
In [7], authors attempted to find experts in enterprises. In

other approaches [4], [21] users were automatically classified
as experts according to their preferences. For all the afore-
mentioned works the ternary relation in the social tagging
system was omitted and the quality of recommendations was
reduced. According to [35], expert tagging usually relies on a
small number of domain experts, who annotate items based on
structured vocabularies. Experts provide tags that are objective
and cover multiple aspects. Pandora [19] is a notable example
of a system that uses experts for tagging music items. The
main advantage of using experts is the resulting well agreed
tag vocabulary. However, the main disadvantages are the
effort needed for finding experts, the time consumption for
performing the tagging and the limited vocabulary that must
be used.

III. THE PROPOSED TFC MODEL

A. Overview and Notation
In this Section we provide a detailed description of the

proposed TFC model. The social tagging data are in the form
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of triplets ⟨Ui, Tj , Ik, w⟩, where the weight w corresponds to
the likelihood that user Ui will tag item Ik with tag Tj . We
denote the set of the triplets as Y (in the rest of the paper
sets or lists are denoted by bold letters). The input of the
TFC model is the set Y, with all weights w initially set to
1. The TFC model consists of three steps and for each step
the weight w per triplet is recalculated. After the TFC model
is built, we recommend N items to user Ui for a query tag
Tj according to the weights in the triplets that contain Ui and
Tj . The three steps of the TFC model are: (a) tag propagation
based on relevance feedback, which results in a superset Y+,
with Y ⊆ Y+, (b) tag clustering by transforming the set Y+

to set X, following the proposed tf ·idf weighting scheme and
(c) triplets in set X are modeled to tensor1 A and then follows
the tensor factorization of A to its low rank approximation Â
by exploiting HOSVD, in order to reveal the latent associations
among users, tag clusters and images.

B. Tag Propagation based on Relevance Feedback

The first step of the TFC model includes tag propagation
based on a relevance feedback mechanism, in order to ensure
that tags will be propagated between similar images only
if they belong to the same concept. Firstly, a content-based
descriptor vector

−−→
DV is extracted from each image based on

[33], called “Color and Edge Directivity Descriptor” (CEDD).
In particular, CEDD incorporates the color and texture infor-
mation of images in a histogram, as follows: firstly, the image
is separated in a preset number of blocks. In order to extract
the color information, a set of fuzzy rules undertakes the
extraction of a Fuzzy-Linking histogram [5], while the latter
stems from the HSV color space. Furthermore, following the
methodology of CEDD, twenty rules are applied to a three-
input fuzzy system in order to generate a 10-bin quantized
histogram, where each bin corresponds to a preset color.
The number of blocks assigned to each bin is stored in a
feature vector. Then, four extra rules are applied to a two
input fuzzy system, in order to change the 10-bin histogram
into a 24-bin histogram, importing thus information related
to the hue of each color. Next, the five digital filters that
were proposed in the MPEG-7 Edge Histogram Descriptor
[34] are also used for exporting the information which are
related to the texture of the image, classifying each image
block in one or more of the six texture regions, shaping
thus the 144-bin histogram. Therefore, for each image, CEDD
extracts a descriptor vector

−−→
DV of 144 quantized attribute

values (dimensions), which are integers ranging from 0 to
7. One of the most important attributes of CEDD is the low
computational power needed for its extraction, in comparison
with the needs of the most MPEG-7 descriptors. However,
also other well known descriptors with similar characteristics
like SIFT, SURF, etc. could be used. Finally, the similarities
between images are calculated based on the L2 distance of
their extracted descriptor vectors

−−→
DV .

1A tensor is a multi-dimensional matrix. An N -order tensor A is denoted
as A ∈ RI1...IN , with elements ai1,...,iN . In this paper, only 3-order tensors
are used.

Next, the relevance feedback mechanism is activated. Given
a query image Q, a list RQ of images is retrieved. The aim
is to refine the query descriptor vector

−−−→
DVQ, so as to retrieve

more positive (relative to the same concept) images in RQ.
Images in RQ are examined based on the class of Q. If an
image in RQ belongs to the same class as Q, then it is marked
as positive, otherwise it is marked negative. Then, according to
Rocchios formula [43] the query’s descriptor vector is refined
as follows:

−−−→
DVQ′ =

−−−→
DVQ + λp

∑
i∈Pos

−−→
DVi − λn

∑
j∈Neg

−−→
DVj (1)

where, λp and λn are control parameters that allow to set
the relative importance to the query image of all positive and
negative images in RQ. We set λp = 1.8, to retrieve the
maximum number of positive marked images and λn = 0,
since users usually ignore negative results, while focusing
only on the positive ones. The refinement of Q is an iterative
process and it terminates when RQ remains the same.

Next, all images in the initial set Y of our social data are
posed as queries. This way, we retrieve for each image Q a set
of positive marked images, denoted by I+, with I+ ⊆ RQ. The
tag propagation process for an image query Q and the resulting
set I+ is performed according to the following equation:

if ⟨U, T,Q, 1⟩ ∈ Y and I+ ⊆ RQ then

∀ I ∈ I+ −→ Y+ ≡ Y ∪ ⟨U, T, I, sim(I,Q)⟩ (2)

Thus, the initial data set Y is transformed to Y+, by propa-
gating triplets in the form ⟨U, T, I, sim(I,Q)⟩, where for each
user U the association between tag T and image I is calculated
according to the respective weight sim(I,Q). Therefore, tag
propagation based on the relevance feedback mechanism is
performed in a more efficient way compared to [38], where
image results include both relevant and irrelevant images,
ignoring the “learning tag relevance” issue. Additionally, the
amount of the propagated tags is performed automatically,
without using the threshold parameter of the items similarity.

At this point we must mention that except for the aforemen-
tioned relevance feedback mechanism, several methods have
been proposed for image-based retrieval so far. Most of them
include probabilistic networks [29], query point movement
[20] and SVM techniques [15]. Nevertheless, at the current
step of the TFC model we focus on the tag propagation
process, which aims to capture the complex image similarity
in a more efficient way, in order to (a) solve the sparsity and
the “cold start” problems and (b) avoid propagating noisy tags
by “learning tag relevance”. Thus, experimental evaluation of
relevance feedback mechanisms is out of the scope of this
paper.

C. Tag Clustering and Social Data Regeneration

In the second step of the proposed TFC model, tag cluster-
ing is performed to reveal topics and consequently to further
handle the problem of sparsity for collaborative filtering in
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social tagging, in order to increase the quality of recommen-
dations. More precisely, the second step of the TFC model
comprises: (a) tag clustering and (b) transformation of the
social data set Y+ to data set X, by modeling the generated
tag clusters with their associated weights w for each quadruple
∈ Y+. In this transformation, an innovative tf · idf weighting
scheme is followed, to ensure that the personal interest of
users and the relation of items and tags to topics are taken
into account.

For validating the impact of tag clustering on the proposed
TFC model, two different clustering methods are presented,
the Tripartite Clustering [32], which captures the ternary
relation in the social tagging data, and an adaptation of the
K-Means clustering. For both algorithms the corresponding
distance functions are described, since they are built upon the
same base, the K-Means algorithm. More specifically, at the
beginning of each algorithm, tags (also users and images in
the Tripartite Clustering) are randomly selected as centroids
of the tag clusters. Next, through an iterative process tags
are assigned to clusters based on the respective distance to
centroids. Then, the centroids of the new clusters are recalcu-
lated. The iterations terminate until the centroids remain the
same or the number of iterations exceed a maximum threshold.
The main difference between the Tripartite Clustering and the
adapted K-Means for tag clustering is that in the former the
distances are calculated at each dimension space (dimensions
corresponds to the different type of entities, i.e. users, images
and tags).

1) Distance Function in Tripartite Clustering: The Tripar-
tite Clustering [32] that produces user, image and tag clusters
at the same time, is denoted by KU , KI and KT , respectively.
A brief description of the Tripartite Clustering follows. For
each type of entity, user, image and tag, we calculate two link
vectors. For each user U two link vectors are calculated, the
tag link vector

−−−→
TLV

(U)
and the image link vector

−−→
ILV

(U)
.

For each image I two link vectors are calculated, the user

link vector
−−−→
ULV

(I)
and the tag link vector

−−−→
TLV

(I)
, and for

each tag T , the image link vector
−−→
ILV

(T )
and the user link

vector
−−−→
ULV

(T )
, respectively. In particular, the value of the j-th

position in the tag link vector
−−−→
TLV

(U)

i of user Ui, corresponds
to the total numbers of times user Ui has assigned tag Tj to
any image, which equals the term frequency value tf(Ui, Tj).
More formally,
∀ user Ui its two link vectors are:

−−−→
TLV

(U)

i = tf(Ui, Tj) and
−−→
ILV

(U)

i = tf(Ui, Ik)

∀ image Ik its two link vectors are:

−−−→
TLV

(I)

k = tf(Ik, Tj) and
−−−→
ULV

(I)

k = tf(Ik, Ui)

∀ tag Tj its two link vectors are:

−−−→
ULV

(T )

j = tf(Tj , Ui) and
−−→
ILV

(T )

j = tf(Tj , Ik)

where i ∈ 1, 2, . . . ,U , j ∈ 1, 2, . . . , T and k ∈ 1, 2, . . . , I
and U , T , I are the total numbers of users, tags and images,
respectively.

The distances between each type of entity are calculated as
follows:

d(Ti, Tj) = α× d(
−−→
ILV

(T )
i ,

−−→
ILV

(T )
j ) + . . .

. . .+ (1− α)× d(
−−−→
ULV

(T )
i ,

−−−→
ULV

(T )
j ) (3)

d(Ui, Uj) = β × d(
−−→
ILV

(U)
i ,

−−→
ILV

(U)
j ) + . . .

. . .+ (1− β)× d(
−−−→
TLV

(U)
i ,

−−−→
TLV

(U)
j ) (4)

d(Ii, Ij) = γ × d(
−−−→
TLV

(I)
i ,

−−−→
TLV

(I)
j ) + . . .

. . .+ (1− γ)× d(
−−−→
ULV

(I)
i ,

−−−→
ULV

(I)
j ) (5)

where greater value of α means that the distances between
tags rely more on their item link vectors and less on their
user link vectors; greater value of β means that the distances
between users rely more on their item link vectors and less on
their tag link vectors; and greater value of γ means that the
distances between items rely more on their tag link vectors
and less on their user link vectors. The value of the distance
can be calculated based on various similarity measures such
as those proposed in [36]. In our implementation the cosine
distance is used between the link vector per type of entity at
each dimension [32].

2) Distance Function in Adapted K-Means for Tag Clus-
tering: In the adapted implementation of the K-Means tag
clustering, where the ternary relation among users, images
and tags are suppressed to images and tags (only the value
tf(Ti, Ik) is considered), the distances between tag Ti and Tj

are calculated as follows:

d(Ti, Tj) =

∑
∀k∈I

tf(Ti, Ik)× tf(Tj , Ik)√∑
∀k∈I

tf(Ti, Ik)
2 ×

√∑
∀k∈I

tf(Tj , Ik)
2

(6)

3) The Proposed tf · idf Weighting Scheme: Both tag clus-
tering algorithms produce KT tag clusters, which correspond
to KT topics. Before regenerating the triplets Y+ to the social
data set X in the form of tag clusters, we calculate user’s Ui

interest in tag cluster KTj and the relation of an image Ik to
tag cluster KTj , by following the proposed tf · idf weighting
scheme. More precisely, user’s interest in tag cluster KTj is
the ratio of tf(Ui, Tj) over tf(Ui), which is the ratio of the
times that user Ui annotated an image with a tag assigned to
cluster KTj over the total number of user’s Ui annotations in
all tag clusters. Similarly, the relation of an image Ik to tag
cluster KTj is calculated as the ratio of tf(Ik, Tj) over tf(Ik),
which is the ratio of the times that image Ik was annotated
with a tag assigned to cluster KTj over the total number of
times the image Ik was annotated. Each triplet ⟨Ui, Tj , Ik, w⟩
in the social data set Y+ is regenerated to ⟨Ui,KTj , Ik, w

′⟩,
where the weight w′ is calculated according to the proposed
tf · idf weighting scheme as:
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w′(Ui,KTj , Ik) =
tf(Ui,KTj )

tf(Ui)
×

tf(Ik,KTj )

tf(Ik)
× . . .

. . .× (1− d(Tj , CentroidKTj
)) (7)

where d(Tj , CentroidKTj
) is the distance (correlation) of tag

Tj from the centroid of tag cluster KTj (topic), given that tag
Tj is assigned to tag cluster KTj .

4) Example of Tag Clustering and Data Set Regeneration:
In the sequel, we explain in detail how the problem of sparsity
affects the accuracy of collaborative filtering recommender
systems in social tagging and how we handle it. We illustrate
a running example of tag clustering in Figure 1 and the
respective triplets are presented in their initial form of tags
in Table I. 
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Fig. 1. Running example of tag clustering

TABLE I
TRIPLETS IN THEIR INITIAL FORM FROM THE RUNNING EXAMPLE

IN FIGURE 1.

ID User Tag Image Weight
1 U1 T1 I1 1
2 U1 T2 I2 1
3 U2 T3 I3 1
4 U2 T4 I4 1
5 U3 T5 I5 1

In the running example user U2 has preferences to both top-
ics, by posting tags to image I3 and I4. A typical collaborative-
based social tagging system, will fail to recommend either
item I1 or I5, because user U2 has not posted common tags
or has not annotated the same items with users U1 and U3.
The solution is provided by clustering tags to two topics, since
U2 has common preferences to topics with U1 and U3 (topics
Airplanes and Cars, respectively). In Table II we depict the
result of the proposed regeneration process according to (7).
In our experiments we show that the proposed social data

regeneration based on tag clusters increase the accuracy of
recommendations.

TABLE II
REGENERATE INITIAL TRIPLETS OF FIGURE 1 AND THEIR
ASSOCIATED WEIGHT w IN THE FORM OF TAG CLUSTERS.

ID User Tag Cluster Image Weight
1 U1 KT1 I1 w′(U1,KT1 , I1)
2 U1 KT1 I2 w′(U1,KT1 , I2)
3 U2 KT1 I3 w′(U2,KT1 , I3)
4 U2 KT2 I4 w′(U2,KT2 , I4)
5 U3 KT2 I5 w′(U1,KT2 , I5)

D. Tensor Factorization and Item Recommendation in TFC
Model

The third step of the TFC model comprises (a) modeling the
data set X in tensor A and (b) applying the tensor factorization
method of HOSVD to produce the reconstructed tensor Â, in
order to reveal the latent associations among users, tag clusters
and images. The final goal is to recommend images according
to the detected latent associations in the reconstructed tensor
Â. The procedure of HOSVD is illustrated in Figure 2, where
I1 = U , I2 = KT , I3 = I are the user, tag cluster and image
dimensions, respectively and S is the core tensor that captures
the 3-way relations.

Fig. 2. Visualization of the result of HOSVD

1) Initial construction of tensor A: Based on the social data
set X, we construct an initial 3-order tensor A ∈ RU×KT×I .
The initial values assigned to each entry of A equals the pre-
computed weights according to (7) in step 2 of the TFC model.

2) Matrix unfolding of tensor A: Tensor A can be unfolded
i.e., transformed to a two dimensional matrix, by arranging the
corresponding fibers of A as columns of An (1 ≤ n ≤ 3) (fur-
ther details can be found in [25]). In our approach, the initial
tensor A is unfolded to all its three mode-dimensions. Thus,
after unfolding A, we create three new matrices A1, A2, A3,
as follows:

A1 ∈ RU×KT I , A2 ∈ RKT×UI , A3 ∈ RUKT×I

3) Application of SVD on each unfolded matrix: Next, SVD
is applied on the three matrix unfoldings An (1 ≤ n ≤ 3),
resulting in the following decomposition:

An = U (n) · Σ(n) · (V (n))T , 1 ≤ n ≤ 3 (8)

To reveal latent associations and reduce noise, the dimen-
sions of each array containing the left-singular vectors (i.e.,
matrices U (1), U (2), U (3)) have to be reduced. Therefore, we
maintain the dominant cn left singular vectors in each U (n),
1 ≤ n ≤ 3 matrix based on the corresponding singular values
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in Σ(n). The resulting matrix is denoted as U (n)
cn . The value of

cn parameters are usually chosen by preserving a percentage
of information in Σ(n).

4) Construction of the core tensor S: The core tensor S
governs the interactions among the three examined modes. Its
construction is implemented as:

S = A×1

(
U (1)
c1

)T

×2

(
U (2)
c2

)T

×3

(
U (3)
c3

)T

, (9)

where A is the initial tensor,
(
U

(n)
cn

)T

is the transpose of

U
(n)
cn , ×n is the n-mode product of a third order tensor [25]

and S is a c1 × c2 × c3 tensor.
5) The reconstructed tensor Â: Finally, the reconstructed

tensor Â is computed by:

Â = S ×1 U
(1)
c1 ×2 U

(2)
c2 ×3 U

(3)
c3 (10)

where Â is a tensor with the same size as A. Â is a good
approximation of A (also known as low rank approximation
of A), in the sense that the Frobenius norm ||A−Â||2F is small
(element-wise squared differences [25]). Moreover, Â contains
less noise and thus, the latent associations are revealed by
keeping only a subset of the dominant left singular vectors.

6) The Generation of Item Recommendation: The elements
of the reconstructed tensor Â represent the final triplets
⟨Ui,KTj , Ik, w⟩, where w corresponds to the likelihood that
user Ui will tag item Ik with tag Tj , where tag Tj has been
assigned to tag cluster KTj at step 2 of the TFC model. If
N items have to be recommended to Ui queried with tag Tj ,
then the N items are selected that have the highest weights
from triplets that contain both Ui and KTj .

IV. EXPERIMENTAL EVALUATION

A. Data Set

For evaluation purposes we prepared a real data set, created
by researchers in 10 different European research institutes
and universities. There are Y =48,564 triplets in the form
user-image-tag with U =400 users, I=1,023 images and
T =11,779 tags. The images have been gathered from the
same 10 research organizations and they were classified to 11
categories (Table III).

TABLE III
NUMBER OF IMAGES INCLUDED IN THE 11 CATEGORIES.

category Animals Apparels Buildings Electronics
# images 163 79 57 48
category Furniture Toys Tableware Plants/Trees
# images 102 37 50 174
category Tools Trans. Vehicles Weapons –
# images 72 158 83 –

We choose to evaluate the proposed TFC model in an image
collection, since images are complex items to describe with
social tags, representing many different aspects and therefore
such a data set is challenging for recommender systems in
social tagging. In order to decrease sparsity, we filtered out
images that are annotated only once (or not annotated at
all) as well as tags that are used only once in our data
set. Additionally, tags are treated as regular text. The three

preprocessing steps are: (a) tokenization based on a standard
stop list (e.g. in, the, of, at, etc.), (b) tags are turned into
lower case, (c) all non-letter or non-digit characters in the
tags are removed (e.g. dots, commas, question marks, etc.).
Tags preprocessing steps resulted in U =400 users, I =849
images, T =2,334 tags and Y =45,784 triplets. Concerning
the experts, we asked from different experts to post tags at the
remaining 849 images. Their expertise domains are in animals,
airplanes, trains, flowers & trees and weapons, respectively.
The tagging process of experts resulted in 237 expert tags and
376 additional triplets. Examples of the evaluation data are
presented in Figure 3, where expert tags are denoted by bold
letters.

 

airplane
fighter
f16

flower
plant
clematics

tree
nature
jap. maple

flight
plane
p51mustang

shark
ocean
white shark

fish
sea
black bass

bird
animal
sparrow

eagle
wing
bald eagle

Fig. 3. Examples of the evaluation data.

B. Experiments Organization

The rest of this section is organized as follows: firstly, we
describe the evaluation protocol for item recommendation in
social tagging systems. Then, we demonstrate how the param-
eters selection of both tag clustering methods is performed to
conclude to the optimal number of tag clusters (topics) in our
data set. In case of using expert tagging we denote it by (exp.).
Afterwards, we evaluate the impact of step 1 (tag propagation
based on relevance feedback) and step 2 (tag clustering) in the
TF method (HOSVD) in terms of recommendations’ quality.
For comparison reasons we separately evaluate each of the first
two steps of the TFC model against the method presented in
[50], where HOSVD is used for item collaborative filtering
and the work in [38], where in addition to HOSVD, content
information was exploited to decrease sparsity and to solve the
“cold start” problem. The reason for selecting both works is
that they share the same TF technique (HOSVD) and therefore,
the ternary relation among users tags and images is preserved.
The wok in [50] is denoted by TF and the method presented in
[38] is denoted by TF(a=0.5), where a is the control parameter
of the propagated tags.

The TF technique (HOSVD) was implemented in Matlab
Tensor Toolbox2, following the MET technique presented in
[22], which is suitable for handling scalable tensors. The

2http://csmr.ca.sandia.gov/ tgkolda/TensorToolbox/
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Tripartite Clustering and the adapted K-Means tag clustering
algorithms were also implemented in Matlab. Additionally, the
implementation of the CEDD descriptor was provided by the
authors of [33].

C. Evaluation Protocol

For the task of image recommendation, the following eval-
uation protocol is used: for each user, one of its triplets is
randomly selected. The set of all selected triplets forms the
test data, whereas the remaining triplets form the training data.
The task of image recommendation is to predict the images
in the hidden triplets. Following the evaluation protocol of
the works in [52] and [38], the quality of recommendations
are measured in terms of recall. Thus, for a test user Ui that
receives a list of N recommended images (top-N list) by
posing a tag query Tj , recall is defined as the the ratio of the
number of relevant images in top-N list over the total number
of relevant images (all images in the hidden triplets contain
test user Ui and tag Tj). Other commonly used measures are
precision and F1. However, the following two factors should
be clearly mentioned: 1) For each user/tag combination in the
test data, a constant number of images has to be predicted
(images annotated with tag Tj by user Ui); and 2) only a pre-
specified number N of recommendations is taken into account.
Therefore, for this kind of evaluation protocol, it is redundant
to evaluate precision (thus F1 too) because it is just the same
as recall up to multiplicative constants. Regarding the problem
that hidden triplets contain tags and not tag clusters, each
tag in the triplets ⟨Ui, Tj , Ik⟩ is mapped to a tag cluster KTj

according to (7) in order to transform the query from tag Tj to
tag cluster-topic KTj . Moreover, we must mention that in all
our experiments mean values of recall are reported, where each
experiment was repeated 10 times. However, in many cases the
differences between the recall values are minimal. To verify
this, for all experiments we applied statistical pairwise t-tests,
where the calculated differences of means were insignificant
at level 0.05.

D. Parameters Selection for Tag Clustering Methods

Our parameter selection for the tag clustering methods
differs to the approach presented in [32], since we aim to
generate tag clusters and not item clusters. Therefore, each
cluster is evaluated according to the Silhouette value s(Tj)
of each clustered tag Tj (also user and image in case of
Tripartite Clustering). Silhouette [42] refers to a method of
interpretation and validation of clusters of data and it is
independent of the classification information. Let x(Tj) be
the average dissimilarity of Tj with all other tags within the
same cluster. Then, the average dissimilarity of Tj with tags of
another single cluster is found. We repeat this for every cluster
of which Tj is not a member. We denote the lowest average
dissimilarity to Tj of any such cluster by y(Tj). Silhouette
s(Tj) of a clustered tag Tj (also user and image in case of
Tripartite Clustering) is calculated as follows:

s(Tj) =
x(Tj)− y(Tj)

max(x(Tj), y(Tj))
(11)

with −1 ≤ s(Tj) ≤ 1. Values below 0 means that the tag
should be assigned to another cluster. Values near 0 means
that the tag is on the borders of its cluster and values close
to 1 means that the cluster is extremely coherent. This way
we vary the number of clusters for the Tripartite Clustering
and for the adapted K-Means algorithm to conclude to the
optimal number of tag clusters, by finding the “peak”, since
for the extreme case where the number of tag clusters equals
the number of tags, the Silhouette value is 1. Nevertheless, as
we previously mentioned (Section III-C), we aim to cluster
tags in order to reveal topics and decrease sparsity, therefore
the extreme case is not our case. In the experiments for
the Tripartite clustering we have to conclude to the optimal
parameter, by keeping the rest parameters constant. Therefore,
image and tag clusters are initially set to 11 (number of
classes), weights α, β and γ are equal to 0.5. The experiments
for the Tripartite Clustering are illustrated in Figure 4 from (a)
to (g) and the experiment for the adapted K-Means is depicted
in Figure 4(h). In all figures, mean values of the clustered tags’
(or users’ or images’) Silhouette are reported. To compare
our results with the one in [32] (in which the classification
information was used), we evaluate only the image clusters
in terms of Purity [56], since only the image clusters are
those which are strongly correlated to classes. To compute
Purity, each image cluster KIb , with b ∈ 1, 2, . . . ,KI , is
assigned to the category-class Lp, with p ∈ 1, 2, . . . , 11 which
is most frequent in the image cluster, and then, the accuracy
of the overall cluster assignments is measured by dividing the
total number of correctly assigned images by R (the number
of clustered images in KIb ). Purity for each image cluster
KIb is calculated as 1

R

∑
r maxj |KIb ∩ Lj |. The respective

experiment is presented in Figure 4(c), which confirms the
result of Figure 4(b) that the optimal number of image cluster
KI equals 15.

To summarize our findings, for the Tripartite Clustering
we conclude to the following optimal parameters: number
of user clusters KU=10, number of image clusters KI=15,
number of tag clusters KT =35, where weights α, β and γ
are equal to 0.5, 0.5 and 0.3, respectively. Also, for the case
of the adapted K-Means tag clustering method we conclude
to same number of tag clusters KT =35. Note that despite
the fact that a few expert tags are used, for each clustering
method expert tagging produces more coherent clusters (larger
Silhouette values), since these tags are very accurate to a
topic [35]. More precisely, Tripartite clustering generates tag
clusters with mean Silhouette values 0.374 and 0.480 with the
expert tagging (adapted K-Means for tag clustering generates
mean Silhouette values 0.342 and 0.409, respectively). In
Table V, we illustrate examples of tag clusters KT generated
by the Tripartite Clustering. In particular, the first column
corresponds to the cluster’s topic, the second one to top-5
tags, ranked by their similarities to cluster’s KT centroid, and
the third column contains examples of expert tags in KT . Note
that expert tags are located far from KT ’s centroid, denoted
by small similarities, since expert tags are only posted by a
few experts, less often than the non-expert ones. However,
expert tags contribute to more coherent clusters, compared to
the initial data set in which they lack. As we experimentally
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Fig. 4. For Tripartite Clustering mean Silhouette values of (a) users versus KU with KI=KT =11 and (b) images versus KI with KU=10 and KT =11. In
(c) is illustrated the purity of image clusters on different settings of KI and in (d) the mean Silhouette values of tags versus KT with KU=10 and KI=15.
Additionally, for KU=10, KI=15 and KT =35 mean Silhouette values of tags by varying (e) the α parameter when β = γ = 0.5, (f) the β parameter when
α = γ = 0.5 and (g) the γ parameter when α = β = 0.5. Finally, in (h) are presented the mean values of tags’ Silhouette versus KT for adapted K-Means
tag clustering.
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TABLE IV
EXAMPLES OF TOPICS OF TAG CLUSTERS KT .

Topic of KT Top-5 Tags (Sim. to KT Centroid) Examples of Experts’ Tags in KT

airplanes airplane (0.98) aircraft (0.97) plane
(0.97) flight (0.93) jet (0.91)

c130 (0.58) boeing737 (0.39) airbus320 (0.22)
f16 (0.21) p51mustang (0.19)

flowers & trees flower (0.95) nature (0.89) green
(0.81) tree (0.76) plant (0.63)

clematis (0.2) gillyflower (0.17) japanese maple
(0.15) oleander (0.12) cedar (0.11)

trains train (0.97) locomotive (0.92) rail
(0.91) railway (0.88) station (0.83)

bullet train (0.43) electric train (0.37) TGV
(0.29) capital metrotrain (0.23) intercity (0.14)

swords & knives knife (0.95) sword (0.94) weapon
(0.84) sharp (0.74) metal (0.71)

rapier sword (0.18) ballad (0.16) baseland (0.11)
quillon (0.1) randel (0.05)

birds animal (0.91) bird (0.87) fly (0.81)
wings (0.76) sky (0.71)

bald eagle (0.27) sparrow (0.24) collared dove
(0.18) roadrunner (0.18) quail (0.13)

fish fish (0.99) sea (0.9) marine (0.85)
ocean (0.83) aquarium (0.73)

blue merlin (0.24) spinner dolphin (0.22)
bream(0.18) black bass (0.14) white shark (0.13)

demonstrate, more coherent tag clusters increase the quality
of recommendations.

E. Impact of Tag Clustering on the TFC Model

Firstly, in Figure 5(a) we demonstrate how we conclude to
the optimal number of retained singular vectors (parameters
c1, c2 and c3) of the initial TF method presented in [50]. A
percentage of c1 = c2 = c3 = 60% suffices in terms of recall,
because we found that higher values increase the HOSVD’s
computational time, without paying-off in terms of the accu-
racy of prediction, based on the complexity of HOSVD [25].
Next, in Figures 5(b) and 5(c) we present the experimental
results for the TFC model with the Tripartite clustering and
adapted K-Means, denoted by TFC(Trip. Clust.) and TFC(k-
means) respectively, by varying the percentage c2 of the tag
clusters’ dimension I2. This way, c2 is set to 90%, since a
further decrease of percentage c2 affects the accuracy of the
prediction. Note that the first step of tag propagation based on
relevance feedback is omitted, since in the current Section we
aim to validate only the impact of tag clustering on the TFC
model.

Next, in Figure 6 from (a) to (c) we present the experimental
results of how recall varies with respect to parameters α, β and
γ in (3), (4) and (5), respectively. Furthermore, in Figure 6(d),
we present recall of TFC(Trip. Clust.) and TFC(k-means), by
varying the number of tag clusters KT . We observed that
we conclude to the same optimal values of α=0.5, β=0.5,
γ=0.3 and KT =35, with the experimental results in Section
IV-D. According to this observation, we verify that generating
coherent tag clusters (larger Silhouette values) is crucial for
the TFC model to achieve high recommendation accuracies.

Furthermore, we compare TF to the TFC model by perform-
ing the Tripartite Clustering for the data set with expert tagging
and for the initial data set in which they lack. From the results
of Figure 7(a) we make the following three observations:
(a) expert tagging in TF, denoted by TF(exp.), reduces the
accuracy of TF, since sparsity increases along with the increase
of user and tag dimensions, (b) the TFC model with the Tri-
partite clustering, outperforms the TF method, since sparsity
is reduced by transforming tags to tag clusters, which directly
affects the collaborative filtering mechanism as described in
Section III-C, (c) a few expert tags can slightly improve the
TFC model, denoted by TFC(Trip. Clust. exp.), since the tag

clusters-topics are more coherent (larger Silhouette values)
according to the experiments in Section IV-D and Figure 6.

Additionally, we evaluate the impact of the two different
clustering methods in the TFC model, denoted by TFC(Trip.
Clust.) and TFC(k-means). As shown in Figure 7(b), Tripartite
Clustering slightly improves the accuracy of the TFC model,
compared to the adapted K-Means in tag clustering, since
the former method preserves the ternary relation among users,
tags and images. Nevertheless, the ternary relation is enhanced
according to the proposed tf · idf weighting scheme (7)
in which users’ interest, images and tags relation to a tag
cluster are taken into account. Therefore, the improvement
of Tripartite Clustering is small compared to the adapted K-
Means in tag clustering.

F. Impact of Tag Propagation based on Relevance Feedback
in TFC Model

To evaluate the recommendations quality of the method in
[38], firstly we control the amount of tag propagation by using
the a parameter. TF(a=0.5) denotes that the tag propagation is
performed only if the similarity between two images is greater
than 0.5. Note that TF(a=1) is the initial TF method, without
tag propagation. For lower values of a, tags are propagated
aggressively. The evaluation of the method is presented in
Figure 8(a). For all three values of a, the method can address
sparsity and “cold start” problems, by propagating tags and
generating additional triplets, as illustrated in Table V (note
that the number of propagated triplets is equal to 0, for the
initial case of a=1). However, the quality of recommendations
is seriously affected by the noisy tags, regardless of performing
aggressive or conservative tag propagation (low or high values
of a) compared to the initial case of TF(a=1). This result
indicates that the method in [38] is not sufficient for exploiting
content to address sparsity and “cold start” problems, without
being significantly affected by noise. This happens because
the “learning tag relevance” issue is omitted.

TABLE V
NUMBER OF PROPAGATED TRIPLETS WITH RESPECT TO THE CONTROL

PARAMETER a, BASED ON WORK OF [38].

a 0.25 0.5 0.75
Num. Prop. Trip. 12,412,973 3,952,186 25,284

Next, we evaluate the step 1 of our TFC model, denoted
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Fig. 5. Recall versus percentage of retained singular vectors for (a) TF with c1, c2, c3 = c, (b) TFC(Trip. Clust) and (c) TFC(k-means) with c1, c3 = 0.6.

by TF(Rel. Feed.), where we perform tag propagation based
on the relevance feedback mechanism according to (2), by
omitting the tag clustering step. In Figure 8(b), we present how
we conclude to the optimal value of the Rocchio parameter of
positive feedback λp in (1). Note that the extreme case of
λp=0, TF(Rel. Feed.) is the initial TF method, where the tag
propagation process in (2) is omitted. Based on the results of
Figure 8(b), we can make the following observations: (a) for
all values of λp TF(Rel. Feed.) outperforms the accuracy of the
TF method (λp=0), since according to (2) the tag propagation
technique is performed between conceptual similar items, by
considering the “learning tag relevance” issue, and (b) the
accuracy is increased, since sparsity and “cold start” problems
are addressed according to the number of propagated triplets,
as depicted in Table VI. Therefore, we set λp equal to 1.8,
to achieve the maximum number of propagated triplets and
consequently the maximum recommendation accuracy of the
TF(Rel. Feed.) method.

TABLE VI
NUMBER OF PROPAGATED TRIPLETS WITH RESPECT TO ROCCHIO

PARAMETER OF POSITIVE FEEDBACK λp BASED ON (2).

λp 1 1.2 1.4 1.6
Num. Prop. Trip. 16,976 18,171 25,164 27,926

λp 1.8 2 2.2 –
Num. Prop. Trip. 30,759 26,262 12,786 –

Additionally, we conducted experiments to evaluate the
whole TFC model, which includes all three steps, denoted
by TFC(Rel. Feed.-Trip. Clust.), against the TF, the TF(Rel.
Feed,) and the TFC(Trip. Clust.) method. In Figure 8(c) the
respective results are presented, based on which two observa-
tions can be made: (a) TF(Rel. Feed.) outperforms TF, since
the sparsity and the “cold start” problems are addressed and
less noisy tags are propagated based on the relevance feedback
mechanism by considering the “learning tag relevance” and
therefore, tag propagation between conceptual similar images
is performed and (b) an analogous improvement is demon-
strated for the case of TFC(Trip. Clust.) compared to the
entire TFC model TFC(Rel. Feed.-Trip. Clust.), since sparsity
is further addressed.

G. Performance Issues

The TFC model consists of an offline part to build the
model and an online part to generate the recommendations.
Firstly, the computational time of the offline part is presented,
consisting of (a) tag propagation based on relevance feedback,
(b) tag clustering and (c) tensor factorization time.

The complexity of the tag propagation process, is O(Iter ·
I ·RQ+Y ·RQ), where Iter is the iterations number of each
query refinement, until the process terminates when the result
list RQ remains the same, and Y is the initial social data set
of triplets. In our experiments we set Iter = 4, since for larger
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Fig. 6. Recall of TFC(Trip. Clust.) with respect to the number of recommended items N , by varying (a) the α parameter in (3), with β = γ = 0.5, (b) the
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number of Iter RQ for all queries remained the same. Also,
we set RQ=10, since it is the minimum length of the result
list RQ, to retrieve the maximum number of positive marked
images for all queries.

The complexity of the scalable adapted K-Means for tag
clustering is O(Iter ·KT · T · I), where Iter is the iterations
number until the centroids remain the same or the number of
iterations exceeds a maximum threshold. In our experiments,
we set the maximum threshold of iterations to 30, to ensure
that after a large number of iterations the centroids remain
the same. The complexity of the Tripartite Clustering [32] is
O(Iter · KT · T · (U + I) + Iter · KT

2 · T ). Nevertheless,
the Tripartite Clustering generates users and image clusters
simultaneously, which should be added to the total cost of the
algorithm.

The complexity of the Tensor Factorization technique
(HOSVD), according to [25], for the initial case of TF is:

O(max(c1 · U2 · T · I,U · c2 · T 2 · I,U · T · c3 · I2)) (12)

and for the TFC model is:

O(max(c1 ·U2 ·KT · I,U · c2 ·KT
2 · I,U ·KT · c3 · I2)) (13)

The respective results are presented in Figure 9, based on
which we can observe that by reducing tags T to tag clusters
KT , the computational cost of HOSVD is decreased. However,
for the case of the TFC model, the computational cost for tag
propagation and tag clustering have to be added. Yet, the whole
computational cost of the TFC model is low, especially for the
case, where the adapted K-Means tag clustering is performed,
by an affordable loss in accuracy, as depicted in Figure 7(b).

The online part of generating recommendations based on
the TFC model is very efficient, because it just needs to sort
a vector of predictions-images for a pair (user, tag cluster),
according to the w values in the final reconstructed tensor.
Therefore, the complexity of the online part is O(I · log I)
for a pair of a user Ui and a tag cluster KTj . Thus, the online
part of the proposed TFC model lasts ≈ 0.17 msec and it is
the same for all users’ queries.

H. Evaluation of TFC model against state-of-the-art methods

For comparison reasons, we conducted experiments to eval-
uate TFC(k-means) against the TF and the TF(a=0.5) methods
in two additional data sets. The first evaluation data set
(denoted by DS1) is described in [39], consisting of 12,773
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Fig. 9. Run times of TF and TFC model. TFC time is calculated by the sum
of tag propagation based on relevance feedback, tag clustering and TF time.

triplets in the form user-song-tag, with 4,442 users, 1,620
songs and 2,939 tags. The second evaluation data set (denoted
by DS2 and described in [38]), consists of 64,025 triplets
with 732 users, 991 songs and 2,527 tags. Note that in case
of TFC(k-means) the first step of tag propagation based on
relevance feedback is omitted, since the information of the
conceptual similar songs is unavailable in DS1 and DS2 (the
triplets have been randomly crawled from [18], by ignoring the
class information of songs). Regarding the parameter selection
for the tag clustering method of adapted K-Means in TFC(k-
means), we followed the experimental evaluation of Figure 5,
where the percentage of singular vectors c1, c2, c3 are set to
60%, 90% and 60% for both data sets. Additionally, following
the experimental configuration of Sections IV-D and IV-E, the
numbers of tag clusters are set to 50 and 40 for data sets DS1
and DS2, respectively, based on the results in Figures 10(a)
and 10(b), where mean Silhouette values of tags and recall for
10N recommended items are reported.

Next, in Figures 10(c) and 10(d), we report recall of
TF (denoted by TF(a=1)), TF(a=0.5) and TFC(k-means), by
varying the number of recommended items (N ) on the x-
axis, as presented in [39] and [38], respectively. We can
make the following observations: (a) TFC(k-means) outper-
forms the TF method, confirming the experimental results
in Section IV-F, since the former address the sparsity and
“cold start”problems and (b) TFC(k-means) slightly increases
recall compared to TF(a=0.5), since the latter also handles
sparsity and ”cold start” problems, by exploiting the songs
content for data sets DS1 and DS2, as also presented in the
experimental evaluation of [39] and [38]. Nevertheless, as we
experimentally proved in Figure 8(a) for the TF(a=0.5) or
TF(a=0.75) methods, controlling the number of propagated
triplets with the a parameter can also decrease the quality
of recommendation in terms of recall, because the “learning
tag relevance” issue is not handled, Additionally, based on
the complexity analysis in (12) and (13), TFC(k-means) has
lower building requirements than TF(a=0.5), since the latter

equals the complexity of the TF method according to [38].
Considering the aforementioned factors, TFC(k-means) clearly
outperforms the TF and TF(a=0.5) methods in both evaluation
data sets, despite the fact that the first step of the TFC model
is omitted.

V. CONCLUSION

The proposed TFC model for item recommendation in
social tagging systems is a promising method, since each of
its steps handles several issues that exist in social tagging
systems, which produce noise and decrease the quality of
recommendations. Through its first step, the content informa-
tion is exploited to propagate tags between the most visually
similar images that belong to the same concept, in order to
handle the issue of “learning tag relevance” and to solve
the sparsity and “cold start” problems. Through its second
step, the problem of sparsity is further handled, by revealing
tag clusters, which correspond to topics. Furthermore, users
interest in topics is taken into account, by following an
innovative tf · idf weighting scheme. In our experiments we
show that a few expert tags improve the performance of quality
recommendations, since they contribute to more coherent tag
clusters. Through the third step, the TFC model preserves the
ternary relation among users, tag clusters and images, solves
the problem of polysemy and synonymity and reveals the latent
associations among users, topics and images. Additionally, the
proposed TFC model minimizes the computational cost of
the Tensor Factorization technique (HOSVD), by reducing the
dimension of tags to tag clusters. In our experiments we show
that by tackling several real world problems, the proposed
TFC model achieves higher recommendation accuracies than
the state-of-the-art methods of [50] and [38], where the same
Tensor Factorization technique (HOSVD) is applied.

Nevertheless, two points should be further investigated in
the TFC model. The first point is that the HOSVD method
is time consuming for building the recommendation model
at the offline part, since tuning is required for finding the
optimal rank of the reconstructed tensor (values c1, c2, c3).
This problem is already identified in [41], but their proposed
method is for tag recommendation purposes, which differs to
item recommendation. The second point is that the the optimal
number of tag clusters-topics is concluded in an empirical
way (by finding the “peak”). Therefore, an automatic way for
finding the optimal number of tag clusters is required, since
as we experimentally proved the number of tag clusters is
crucial for the TFC model to achieve high recommendation ac-
curacies. Recently, there has been a growing interest in multi-
way probabilistic clustering and some efficient algorithms have
been developed for this problem. For example He et al.’s [13]
algorithm is proposed for automatically detecting number of
clusters in a tensor-based framework. However, all these are
useful directions for future research.
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