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Abstract 
This paper presents two complementary approaches to automatically classify pottery sherds: 

one that focuses on the sherd’s profile and the other that examines visual features of the 

sherd’s surface. The methods are validated using a set of pottery sherds that were collected 

during surveys at the ancient site of Koroneia (Greece), which were carried out by the 

‘Ancient Cities of Boeotia’ team (under the directorship of Professor J. Bintliff). Both 

automatic classification techniques produce good results using different sherd classification 

criteria, such as shape, production technique and chronology. 
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1. Introduction 
The automatic classification of pottery sherds has stimulated great interest among 

archaeologists and computer scientists in recent years (e.g. Makridis 2012, Karasik 2011, 

Martinez-Carrillo 2011). Pottery is the most common archaeological evidence that is found 

during fieldwork and pottery specialists are confronted with the time consuming task of 

processing tens of thousands of sherds to be able to make hypotheses on the chronology, the 

functional zoning and trade exchanges of the site under study. Comparisons between different 

archaeological sites and regions are then made possible, thus highlighting differences and 

commonalities in the economy of the ancient world
1
. This paper presents two automated 

complementary approaches that compensate and complement one another in the difficult task 

of pottery classification: one is based on the matching of the sherd’s profile and the other one 

                                                 
1
 See the recent contribution of Poblome et al. in comparing the Late Roman phases of the 

Boeotian cities of Tanagra, Thespiae and Koroneia (Poblome et al. 2012), and Reynolds 2010.  



exploits the extraction of visual features (such as colour and texture
2
 information) from the 

pottery sherds. The final goals that we aim to achieve are to (1) reduce the time of pottery 

classification and (2) improve the consistency of the results. Besides being an aid for the 

pottery specialists, these two approaches can also be used as a training tool for archaeology 

students in the process of learning how to classify pottery, since these methods are based on 

the same procedure that archaeologists follow to process sherds. 

 

 

2. The archaeological context 
The pottery dataset that was used for the development of the matching algorithms and 

techniques that we present in this paper comes from the survey of the ancient city of Koroneia 

in Boeotia, situated on a hill surrounded by the ridges of Mount Helicon in Central Greece. 

The study of this site started in 2006 as part of a regional survey, which is carried out since 

the late 1970s on the whole Boeotia region, under the directorship of Professor John Bintliff. 

The archaeological traces on the hill suggest occupation phases from Prehistory up to the 14th 

century when the site was abandoned (Bintliff 2011). The aims of the survey of Koroneia are 

to (1) map the extent of the ancient city and to identify spatial changes in the settlement over 

time, and (2) recognise different functional zones in the city, such as domestic, public, and 

production units. A variety of non-destructive methods are being applied to study Koroneia, 

such as geophysical analysis, recording of architectural remains and surface collection of 

pottery sherds (Bintliff et al. 2011).  

Pottery, as is the case for other Graeco-Roman sites, is the most abundant source for 

reconstructing the nature and history of ancient Koroneia. The amount of sherds that is 

present on the hill is estimated at about 2 million, of which around 100.000 were 

systematically collected by the end of the survey. The majority of the material that comes 

from Koroneia is made of fragments of pottery, whose edges have been worn by exposure on 

the surface and agricultural damage. The problems related with collection and identification 

of survey pottery have been already discussed elsewhere (Schon 2011; Rutter 1983), and this 

material constitutes a particularly interesting and challenging dataset to train the matching 

algorithms presented in this work. 
In order to develop the classification algorithms, we selected 203 sherds that had been 

classified by the pottery specialists. In detail, the distribution of the sherds in the classes 

assigned by the experts was as follows: regarding shape types, 24,6% were bases, 17,7% were 

body sherds, 3,5% were handles 53,7% were rims and 0,05% were unclassified; regarding the 

production technique used, 95,1% were wheel made and 4,9% were hand made; finally, 

regarding chronology, the sherds have been grouped into Classical-Hellenistic (1,5%), 

Hellenistic (36,9%), Roman (36,5%), Hellenistic-Roman (7,4%) and unclassified (17,3%). 

Pictures of the sherds were taken from the front and back side, and from the profile view with 

an HD camera. The following sections present the two approaches, along with the results of 

the pilot stage and suggestions for future improvements. 

 

 

3. Profile matching approach 
Our first approach tackles the pottery classification task by taking into consideration the 

sherd’s profile, on the classical assumption that two pots can be differentiated from each other 

on the basis of their profile structures. This approach uses as ground truth archaeological 

taxonomic books, in which the profiles of the various pottery shapes are published along with 

their description. In our case, we used the publications by Susan Rotroff (1997, 2006) on the 

pottery from the Athenian Agora for the Hellenistic period, and the publication by John Hayes 

(1972) for the Roman period. The algorithm aims to match the profile of a newly collected 

sherd to the profiles that are published in the pottery catalogues. To develop the method, we 

                                                 
2
  The term ‘texture’ will be used throughout the article as intended in computer vision, i.e. any 

visual characteristics of a picture such as colour, visual patterns and shapes. This in contrast to the 

more specific meaning that texture has in archaeology which mostly refers to the fabric of a sherd. 



selected 9 sherds that the pottery specialists had classified by indicating exact matches in the 

reference books. By matching these sherds from Koroneia with corresponding profiles that 

are published in the chosen reference books, we hypothesise that it is possible to highlight 

interesting similarities and differences among pottery productions that can be quantified in a 

mathematical way.  

Recent works propose automatic ways to classify artefacts based on their profile. For 

example, Durham et al. (1995) used the generalized Hough transform to perform artefact 

retrieval and matching by edge detection and thresholding. A reference point at the top left 

corner of an image is chosen to create the feature vectors. The matching process is done in 

two different ways: the whole shape and part of it is matched, in the latter case with a manual 

intervention. In a similar fashion, Mara et al. (2002, 2003) developed a system for sherd 

classification based on a Hough-inspired method where the curvature properties of the object 

were used. Mom and Paijmans (2005, 2008) designed a tool named SECANTO that considers 

the sum of squared distances between the contour of vessels to perform the comparison by 

measuring dissimilarities and finding “look-alikes”. Gilboa et al. (2004) developed a 

mathematical and computational tool for morphological description, classification and 

analysis of archaeological artefacts. In their approach, first a curvature function is defined for 

each fragment and then compared by measuring their relative distance. Hristov and Agre 

(2013), Karasik (2010), Kampel & Sablatnig (2007), and Maiza & Gaildrat (2005) present 

other recent profile-based automated pottery classification approaches. Our new method is 

designed to be applicable to large datasets and be robust to noise, deformations and even deal 

with partial shape matching, all topics which prove very challenging for these other previous 

works.  

The strategy we adopted is inspired by the Scale Invariant Feature Transform (SIFT) method 

of Lowe (1999, 2004) and is based on the development of a shape matching algorithm that is 

invariant to translation, scale and rotation. Importantly, we are not directly using the SIFT 

method but, instead, apply our method to the shape of 2D objects rather than to the intensity 

fields of images as is traditionally done with SIFT. In addition, our shape representation is 

derived from the region based medial point description of shapes, proposed by Kovács et al. 

(1998). This model is based on human visual perception and how human attention is driven to 

certain shape characteristics such as corners and salient symmetries. In this paper we propose 

a possible implementation of Kovács’ model, by developing a method that performs shape 

matching to pottery sherds’ profiles, but that can be generalized to all kinds of 2D objects and 

their contours. In order to match the sherd’s profile with the profiles in the reference books, 

the algorithm exploits feature extraction through a top-hat filter (Vincent 1993) (from 

mathematical morphology applied to 2D images) and dominant feature points analysis.  
 
 

3.1 Feature extraction and matching 

3.1.1 Medialness measurement 

Our feature extraction process is based on the medialness measurement of the pottery sherds’ 

profile. The purpose of performing the medialness measurement of the object is to provide an 

effective description of the image which is local and compact and can be easily applied at 

different spatial scales (Kovács 1998). The goal is to extract the most informative description 

of the object (or shape), cumulatively, in order to have sufficient information on the object 

with which to classify it. A medial point is well defined by computing the epsD  function, 

which is based on equidistance. The epsD  value at any point in space represents the degree to 

which this point is associated with a percentage of bounding contour pixels of the object 

within a tolerance of value eps (Kovács 1998) (see Figure 1).  

 



 

Figure 1: The epsD  function for a simple shape (after Kovács 1998, 2325). 

 

The epsD  function is defined as the sum of the curve segments falling inside the eps 

neighbourhood (represented as the thick boundary segments within the grey ring) of the M(p) 

radius circle around p (Kovács 1998). The mathematical definition of epsD  is: 
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where p = ],[ pp yx , i.e. a point in the image space; b(t) = |)(),(| tytx  is a vector in the 2D 
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and T is defined as: 
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which gives the total measure of the set. The medialness measurement is performed for both 

the internal and external regions of the object. For the exterior medialness measurement, a 

region restriction has been applied which depends on the parameter MaxMinR  (see Figure 2).  

 



 

Figure 2: Illustration of maximum of the minimum radial distance ( MaxMinR ). 

 

The interior medialness reflects in fact the sherd’s medial description, while the exterior 

medialness shows the nature of the concavities that are present on the sherds. Figure 3 shows 

the internal and external medialness of a sherd. 

 

 
Figure 3: The black region of (a) indicates where the internal medialness will be performed, 

while the grey region is the restricted region for the exterior medialness measurement. (b) 

represents the internal medialness and (c) the exterior medialness of the sherd. 
 

 

3.1.2 Dominant point extraction 

The dominant point extraction is a process for identifying the most informative feature points 

from the medialness image. Dominancy is decided by how many boundary pixels are in the 

vicinity of a medial point. If a point (p) represents a large amount of edge information (under 

the tolerance eps), then it will be considered as a candidate dominant point. To extract 

automatically such dominant points, a top-hat transform is used. 

 



 
Figure 4: Top-hat transform on the image showing (a) internal medialness and (b) external 

medialness. The images at the bottom display the candidate feature points. 

 

The top-hat transform is a well-known morphological processes in the field of image 

processing. Between the two types of top-hat transform (black and white), here (as shown in 

Figure 4) we chose to use the black top-hat transform to extract the most informative feature 

points from the medialness image. In order to correctly detect the sherd’s profile, the image of 

its medialness measurement is first filtered by using ‘image closing’, a morphological 

transformation that fills the gaps in the image’s contours. The top-hat transform is then 

applied, as the difference of image closing and the original image (of medialness) itself, 

followed by thresholding the peak values (i.e. discarding the lower peaks considered as 

noise). Upon application of the top-hat transform, sequences of peaks are generated, which 

are called dominant points. 

 

 

3.1.3 Matching process 

The matching process uses the dominant points to match the external and internal features of 

the test case, respectively, to pre-computed external and internal dominant points of the target 

image. In order to make the matching invariant to scale and rotation, first it is required to find 

the scale and rotation of the test image with respect to the target image. Scale (β) is defined as 

the ratio of the minimum radial distance (as defined in medialness measurement) and rotation 

is the difference of orientations (response direction) of two matching feature points with 

respect to the positive x-axis. A rotation invariant feature spread has been used to perform the 

matching task efficiently. If the feature points ),( 21 pp  of the test image match to ),( 21 qq  of 

the target image, respectively, then the scale and rotation of the image are defined as: 
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The total matching performance is evaluated as the ratio of the total number of dominant 

points matched (both internal and external) to the total number of dominant points in the test 

case. 

 

 

4. Visual features extraction approach 
Recently, several approaches for the automatic classification of archaeological sherds have 

been presented that consider colour and texture information from pictures. In Kampel and 

Sablatnig (2000), the sherd colour is used, while Smith et al. (2010) employ both colour and 

texture characteristics. Additionally, texture-based features are used and a profile 

morphological analysis is performed by Li-Ying Qi and Wang Ke-Gang (2010) and Karasik 

and Smilansky (2011), respectively. A common characteristic of the above methods is that 

they are designed to take into account the particular characteristics that are present in the 

sherd databases that are used for experimentation. 

In this section, a novel technique for automatic archaeological sherd classification is 

presented, which is based on the extraction of colour and textural local features from the 

sherd surface and the subsequent estimation of a global sherd descriptor vector, using a new 

‘Bag-of-Words’ technique. The method takes into account information from both the front 

and the back view of the sherd for computing a more complete description. Additionally, a 

feature selection algorithm is applied in order to maintain the most discriminating features.  

Regarding the feature extraction procedure, a combination of relatively simple low-level 

visual features focusing mainly on the colour properties of the sherds, is used. These were 

selected after extensive experimentation and aim at handling also low-textured sherds or 

fragments that present extensive deterioration on their surface. The features employed are: 

 Colour components RGB, HSV and YIQ, which are typically present in most visual 

classification frameworks and also exhibit low computational complexity.  

 Standard deviation (Guo et al. 2010), whose histogram is proven to be very efficient 

in a variety of classification tasks. 

 Michelson contrast (Michelson 1927), which is appropriate for modeling faint areas 

on the sherd surface that are due to deterioration caused by subsoil substances and 

time.  

 Kirsch edge map (Kirsch 1971), whose statistical analysis is used to reveal the 

degradation degree or rills on the sherd surface. 

 Local binary patterns (Ojala et al. 2002) are efficient descriptors designed for texture 

classification and have been widely used due to their simplicity and rotation-

invariance characteristic. 

All the above features were selected after extensive experimentation, as they have been 

shown to outperform typical well performing descriptors that have been proposed in the 

literature for the analysis of general purpose images, e.g. Scale Invariant Feature Transform 

(SIFT). To produce a global descriptor vector for every examined sherd image, the ‘Bag-of-

Words’ (BoW) (Csurka et al. 2004) methodology is followed. In more detail, this 

methodology initially requires a clustering of the computed descriptors, where the estimated 

clusters include a fixed-size vocabulary of so-called visual words. Subsequently, histograms 

of the estimated words, that are computed using the constructed vocabulary of visual words 

and the original descriptors, are used for representing the image content. Typical techniques 

of this category employ the K-means algorithm for clustering (Sheng et al. 2010; Kandasamy 

and Rodrigo 2010; Hotta 2009; Chimlek et al. 2010), mainly due to its ease of 

implementation. However, K-means has increased sensitivity to its initialization and local 

search strategy. In order to overcome the aforementioned problems, a new technique for 

creating ‘Bag-of-Words’ is proposed, using the Reddi multi-thresholding concept (Reddi et al. 

1984). In particular, visual ‘words’ are created by applying multiple thresholding on each 

local feature’s histogram of values. The adopted method of Reddi has the advantage of 

maximizing the interclass variance between histogram peaks and locating thresholds on 

histogram valleys. By locating thresholds on histogram valleys, the possible loss of 



information due to histogram clustering is minimized. More specifically, if we create an 

image I of dimensions KxL and that each pixel’s value belongs in the interval [0, 255], where 

0 corresponds to black and 255 to white colour (i.e. grayscale values). The proposed BoW 

model can then be described by the following steps: initially, histogram extraction for each 

local feature sf  takes place according to the following equation: 
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where  jif ,  is the feature value at pixel  ji, and d is the delta function, which is defined 

as follows: 
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Then, the accumulated histogram 
sf

AH  is estimated for every feature, taking into account all 

sherds in the used dataset according to the following equation: 

 



N

i

fif xhAH
ss

0

, ),( ,     (8) 

where N is the total number of sherd’s images. Finally, (Reddi et al. 1984) multi-thresholding 

is applied to each feature’s accumulated histogram fAH . Visual “words” are created 

according to the features’ values and the estimated thresholds, as described above. Using this 

transformation, the dimensionality of the final global feature vector is efficiently decreased 

from its original value (i.e. the number of histogram bins) to the number of the utilized 

thresholds. After creating the BoW, all local features are concatenated forming a global 

descriptor vector that describes the whole sherd image.  

Having computed the low-level visual description of a given sherd image, a feature selection 

step is applied for maintaining the most distinctive features and improving the time 

performance of the overall classification framework. The feature selection techniques that 

were comparatively evaluated are: a) Correlation-based Feature Selection (CFS) (Hall 2000), 

b) Chi-Square attribute selection (Jonhson et al. 1994), c) Consistency-based (Liu and Setiono 

1996), d) Principal Component Analysis (PCA) (Jolliffe 1986), e) Relief Attribute Selection 

(Robnik-Sikonja and Kononenko 1997) and e) Support Vector Machines (SVM)-based 

(Guyon et al. 2002). From the above mentioned methods, the PCA technique led to the best 

classification performance. To this end, the reported experimental results are computed using 

PCA for realizing feature selection. 

At the final stage of the proposed algorithm, every examined sherd is associated with one of a 

set of predefined classes/types. To perform this task, a series of different classification 

techniques were experimentally evaluated. The latter included the application of the following 

classifiers: a) K-Nearest Neighborhood (KNN) (Aha and Kibler 1991), b) SVM (Burges 

1998), c) Naïve Bayes (John and Langley 1995), d) Sequential Minimal Optimization (SMO) 

(Platt 1999) and e) Simple Logic (Sumner et al. 2005). From the aforementioned 

classification schemes, the KNN algorithm led to the best overall classification results. 

 

 

4.1 Reddi multi-thresholding 

In this section, the multi-thresholding technique which is used in the ‘Bag-of-Words’ creation 

is described in more detail In the literature, there are several histogram-based multi-

thresholding techniques which are used mainly for image segmentation or image binarization 



(single threshold). The method of Reddi et al. (1984) extends the global (binary) threshold 

method of Otsu (1979), which is one of the most efficient methods for global thresholding, to 

the multi-thresholding case. The considered criterion consists of the selection of the 

thresholds so that the interclass variance between dark and bright regions is maximized. The 

Reddi multi-thresholding technique, which is applied to all selected visual features, except for 

LPB (LBP histogram has only 24 bins), can be summarized in the following steps: Initially, 

the number of thresholds N is defined. Then, the threshold values are initialized according to 

the following equation:  

 
1
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N
ki  ,     (9) 

where 256 is the range of possible pixel values in a gray scale image. When this algorithm is 

applied to normalized features, the range of possible values can change from [0,255] to [0,1]. 

Subsequently, the following error values are calculated for each threshold ik : 

 
    

 
    

 
    

n
nnn

nnn k
kmkkm

kke

k
kkmkkm

kke

k
kkmkm

ke





















2

255,,
,

2

,,
,

2

,,0
,0

1
1

2
3221

212

1
211

11

 

      (10) 

where  
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kkm , , ik  and jk  are neighboring thresholds, x is the position in the 

histogram and xp  is the value in this position. Then, new threshold values are calculated 

according to the following equation: 
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The overall procedure is repeated until 5.0|)||,...,||,max(|21 neee  

A more detailed description of the presented approach can be found in Makridis and Daras 

(2012), where extensive experiments as well as a comparative evaluation are also given. 

 

 

5. Results 

The profile matching approach based on medialness measurement performs well when the 

sherd has reasonably recognisable features such as ridges, concavities, and variations of the 

object’s thickness. Figure 5 shows the matching of an actual sherd profile with the profiles 

labelled in the reference books. If the sherd has less revealing medialness or it is flattened 

(e.g. body sherds), then the algorithm gives multiple matching locations with a similar 

matching percentage as shown in figure 6. Although the results shown in figure 6 are 

promising and demonstrate that in principle it is possible to find good matches between 

sherds and reference profiles, at this stage manual inspection of the results is essential to 

verify the archaeological meaningfulness of the matches.  



 

 
Figure 5: (a) displays the description of features that are extracted using the medialness 

measurement. The algorithm relies on recognising the dominant points that describe the 

geometry of the profile. For this reason, there can be two locations in the target image where a 

dominant point in the test case finds a match, as shown in (b). A following step must be 

performed that finds the correct rotation, scale and orientation of the test image, in order to 

find the best matching location, as shown in (c). 

 

 
Figure 6: This image shows the matching between the profiles of a number of sherds as they 

are found in the reference books (in black) and those that were found during the survey at 

Koroneia (in grey). The first match to the left shows a good correspondence obtained between 

the sherd and the reference profiles. However, since the sherd has a high degree of flatness, 

multiple matches are found (a). In contrast, when the sherd has more prominent 

morphological features, only a single match per sherd is found. 

 



The visual features extraction approach was experimentally evaluated using the already 

described Koroneia pottery dataset that contains images of approximately 200 sherds, where 

25% of the sherds were used for training and the remaining 75% were used for evaluation. 

Detailed experimental results are given in Tables I-III for three different classification criteria, 

namely sherd type, production technique and chronology. The obtained classification results 

are given in the form of the calculated confusion matrices, while the overall classification 

accuracy (i.e. the percentage of the sherds that were classified correctly) is also given for 

every case.  

 

Table I: Experimental results for ‘Sherd type’ criterion 

Confusion matrix 

 
Associated class 

Actual class 

 
body base handle rim 

body 63,89% 13,89% 0,00% 22,22% 

base 44,44% 11,11% 3,70% 40,74% 

handle 0,00% 0,00% 66,67% 33,33% 

rim 9,88% 2,47% 0,00% 87,65% 

Overall classification accuracy: 65,99% 

 

Table II: Experimental results for ‘Production technique’ criterion 

Confusion matrix 

 
Associated class 

Actual class 

 
hand wheel 

hand 80,00% 20,00% 

wheel 2,78% 97,22% 

Overall classification accuracy: 93,96% 

 

 

 

 

 

 

 

 

 

 

 

 



Table III: Experimental results for ‘Chronology’ criterion (CH: Classical-Hellenistic, H: 

Hellenistic, HR: Hellenistic-Roman, R: Roman) 

Confusion matrix 

 

Associated class 

Actual 

class 

 
CH H HR R 

CH 50,00% 0,00% 0,00% 50,00% 

H 3,57% 64,29% 3,57% 28,57% 

HR 0,00% 75,00% 16,67% 8,33% 

R 0,00% 38,89% 1,85% 59,26% 

Overall classification accuracy: 55,65% 

 
 

 

6. Discussion and Future Work 

The aim of this study was to assist in the manual classification of sherds that is carried out by 

pottery specialists, by providing an automatized, computer-based classification approach that 

allows users to obtain consistent results. This paper presents the preliminary results of the two 

complementary approaches we have developed that take into consideration different 

characteristics of the sherds, namely, their profile and texture. The approaches were tested 

using a challenging dataset, i.e. sherds that were collected during surface survey and have 

therefore deteriorated due to surface exposure and ploughing.  

The profile-based approach proposes to tackle the automated classification of pottery sherds 

by adapting Kovács’ method on shape representation (1998) to the shape matching problem. 

Our implementation of Kovács’ method uses as ground truth the images of classified pottery 

shapes from the books of Rotroff (1997, 2006) and Hayes (1972) that are used by the pottery 

specialists as reference to create the classification of imported pottery wares at Koroneia. For 

the moment only a small selection of sherds from Koroneia was used to develop the method. 

In the future a larger set of sherds will be considered and the results will be used to provide a 

quantified reference of pottery variations by overlapping the profiles of the sherds that were 

found at Koroneia with published material, thus offering further insight into Koroneia’s 

pottery assemblages.  

The visual features extraction approach exploits a new ‘Bag-of-Words’ technique that 

overcomes the limitations of traditional BoW methods. This approach exhibits promising 

classification results for all supported criteria and most defined classes. However, there are 

also classes that present low recognition rates, i.e. ‘base’ and ‘Hellenistic-Roman’. The ‘base’ 

class was confused with ‘body’ and ‘rim’, which can be related to the use of pictures as input 

data for the classification. In fact, in the case of pottery fragments, where only a small fraction 

of the original complete shape is preserved, the algorithm may not be able to detect the 

features from the pictures that are relevant to distinguish between e.g., a fragment of a base 

and a rim. For this reason, attention must be paid to how the pictures are taken; also, the 

combination of the visual features approach with the profile-based approach that we described 

could increase the accuracy of the classification. Regarding the ‘Hellenistic-Roman’ class, 

this was mainly confused with the ‘Hellenistic’ class. The sherds for which the computer-

based and the manual classification have returned different classes are currently under 

scrutiny by the pottery specialists to establish whether this mismatch could provide further 

insight into the classification of Hellenistic and Roman sherds. We envision that the visual 



extraction approach could be used to highlight the sherds for which conflicting classifications 

exist, and that therefore need to be reconsidered by the pottery specialists.  

As future work, the two approaches will be combined in order to fully exploit their 

complementarity in the classification of sherds. Also, we propose to include pictures of clay 

fabric to be classified using the visual features extraction approach. In this way, the automatic 

classification of the sherds will be integrated with crucial information for the identification of 

local production of pottery and trade exchanges (see Moody et al. 2003). In addition, we will 

investigate the potential of unsupervised machine learning techniques to cluster the sherds in 

order to compare the groupings that the algorithm creates with those created by manual 

classification. The unsupervised machine learning could help in highlighting new groups or in 

combining previously separated categories. In this way, a more objective classification could 

be obtained, by limiting the bias inherently connected with manual classifications (e.g. the so-

called “Wallcott's shoehorn” as defined by Gould 1989).  
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