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Abstract: Fire detection in videos forms a valuable feature in surveillance systems, as its utilization
can prevent hazardous situations. The combination of an accurate and fast model is necessary for
the effective confrontation of this significant task. In this work, a transformer-based network for
the detection of fire in videos is proposed. It is an encoder–decoder architecture that consumes the
current frame that is under examination, in order to compute attention scores. These scores denote
which parts of the input frame are more relevant for the expected fire detection output. The model
is capable of recognizing fire in video frames and specifying its exact location in the image plane
in real-time, as can be seen in the experimental results, in the form of segmentation mask. The
proposed methodology has been trained and evaluated for two computer vision tasks, the full-frame
classification task (fire/no fire in frames) and the fire localization task. In comparison with the
state-of-the-art models, the proposed method achieves outstanding results in both tasks, with 97%
accuracy, 20.4 fps processing time, 0.02 false positive rate for fire localization, and 97% for f-score and
recall metrics in the full-frame classification task.

Keywords: transformers; fire detection; segmentation; real-time; videos; fire localization; image
classification

1. Introduction

CCTV (closed-circuit television) control systems are always installed in industrial
fields to protect the area from either illegal human activities or physical anomalies that
could have catastrophic effects. Given the widespread use of these control systems, a
number of automatic detection algorithms have been integrated into them to automatically
alert in case of danger, such as fire [1]. Fire detection refers to the ability of control systems
to identify and detect fire as quickly as possible. It can provide an early warning of
fires, helping to minimize property damage and prevent the loss of life. Additionally, fire
detection can be integrated into other smart building systems, such as fire suppression
systems, to provide a comprehensive fire safety solution [2].

On the first steps of the research in the field, researchers suggested image processing
techniques, using handcrafted features extracted from color, texture, contour, motion
information, etc., either alone or in combination with machine learning approaches, by
using classifiers such as SVMs, random forests, Bayes [3] for the fire detection task in videos.
Recent research has made use of deep learning techniques, as they can automatically extract
features and provide better results. Many approaches [4–7] in the literature for the fire
detection in videos task use their own video datasets, which are not published for training
and evaluation, or image datasets. Others although they attempt to solve the localization
problem in videos, they evaluate their performance on the full-frame classification task (the
presence of fire in frame or not), without evaluating their localization performance [8–11]
and others prefer to present their results in fire localization task without comparing them
with the results of prior works [7]. All these derive from the fact that there is not a complete
fire detection in videos benchmark, annotated with segmentation masks in all frames, that
contains an adequate amount of videos.
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This paper introduces transformers for the fire detection task in videos. A transformer
is a model that applies the self-attention mechanism, which measures the significance
of each part of the input features (visual features, word embeddings, etc.), according to
the problem one attempts to solve, in the form of weighting scores. Doing so, it utilizes
the most relevant parts from the input [12]. It was initially applied to natural language
processing (NLP) [13], but due to its success in that field, its use extended to computer
vision tasks, such as image classification, object detection, and action recognition [12]. It is
an encoder–decoder architecture, where the encoder consists of layers generating attention
scores that indicate which parts of the input are relevant to each other. The decoder consists
of layers that project the features in different and more suitable forms [12]. In NLP, the
translation from one language to another is such an example.

The proposed approach is following the transformer from [14], but in a simplified form.
This method removes the bipartite matching, class head, and bounding box head because
they are unnecessary for the task and replaces the object queries, which are learnable
embeddings, with the feature vector of the frame that is under process, in order to reduce
model parameters, as this does not reduce the quality of the output. More specifically, both
the encoder and the decoder consume the features from the current frame that is under
process, in order to generate attention scores. For the fire localization task, these scores
pass through a head, called mask head, that produces segmentation masks in the same
way with [14]. Following [14], the mask head consists of a multi-head attention layer, in
order to seek visual correlations between the features of the encoder–decoder outputs and a
FPN architecture module for increasing the resolution of the predicted segmentation mask.
For the full-frame classification task, the decoder attention scores pass through a linear
layer, in order to predict the frame class (fire/no fire).

For the needs of the proposed method for the fire localization task, a segmentation
mask dataset was created, based on the [15] dataset, by applying the SLIC [16] method,
which divides the frame by superpixels. The superpixels that are totally enclosed in the
ground truth bounding box rectangle were considered fire superpixels, and all the others
were considered non-fire. This produces segmentation masks that specify the exact location
and shape of the fire in the frames, according to the ground truth bounding boxes.

This study is divided into five sections. Section 1 highlights the need of integrated
fire detection systems in surveillance systems, and the importance of accurate and fast
models for their reliable performance. Additionally, the methodology is introduced and
some prior works are referenced. Section 2 presents two categories of prior works in more
detail: methodologies based on handcrafted features and deep learning-based methods.
Section 3 describes, in detail, the proposed method, module by module. Section 4 presents
the quantitative and qualitative results of the proposed method, in comparison with prior
works, the implementation details, and discussion of the results. Finally, in Section 5, the
study and its findings are summarized.

2. Related Work

As can be seen in the literature, the first efforts for fire detection in videos focused
on the extraction of handcrafted features related to color, texture, motion information, etc,
and their analysis, which provided remarkable results. However, deep learning-based
approaches have gained field, due to their top performance.

2.1. Handcraft Features

In 2007, Celik et al. [17] used a generic color model in order to propose a fuzzy
logic-based fire detection method. YCbCr color space was chosen for its deterministic
characteristics in the Y, Cb, Cr color channels. For example, in a fire pixel, it is more possible
that Y(x,y) will be greater than Cb(x,y) because the luminance information, which is related
to the intensity of the pixel, is expected to be high. Three years later, Celik et al. proposed a
combined color- and motion-based fire detection method, but this time in the CIE L*a*b*
color space, in order to extract color related features. They used a threshold-based classifier
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in order to subtract background from fire regions [18]. The same year, Zhou et al. [19]
proposed a contour-based fire detection problem, which consists of three stages: (1) the
candidate fire frame selection stage to select the most suspicious frames and remove the
others, (2) the fire region selection stage to detect the fire pixels by fire-region selection
rules, and (3) the contour-based fire decision, where it performs four operations (dilation,
erosion, mini region erasing, and Canny edge detection) on all fire regions, in order to
detect the exact fire contours, and finally, fire decision rules based on three characteristics
(i.e., area, perimeter, and roundness of the flame contours) to determine whether a fire
occurs in the video or not. The next year, Chenebert et al. [20] proposed a non-temporal
texture-driven method for fire detection, where they used texture- and colour-based feature
descriptors as input to train classifiers, such as neural networks and regression trees. For
texture descriptors, they used hue and saturation from the HSV color space. This model
provided competitive results, until now. A fire detection method based on shape variation,
color, and motion was proposed by Foggia et al. [21], which combined with a multi-expert
system and weighted voting, in order to manage the high dimensional feature vectors
derived from the color and motion characteristics of fire. Additionally, they proposed a
descriptor based on a bag-of-words approach for the motion representation. More recently,
Kong et al. [11] proposed the use of logistic regression and temporal smoothing. More
concretely, for the determination of a candidate fire region, they took into consideration
the color component ratio, and they obtained the motion cue of fire from background
subtraction. For size, motion, and color information, they used logistic regression. In order
to differentiate fire, fire-like objects, and background, they used distribution and Chroma
ratio (Cb/Cr). They concluded that temporal smoothing reduces false alarms. Han [10]
proposed the use of motion and color features for their fire detection approach. They used
the Gaussian mixture model for background subtraction and a combination of RGB, YUV,
and HSI color spaces for the multi-color detection. With the help of these two steps they
identify the fire areas in the image plane. Gong et al. [22] also proposed motion and color
features for their fire detection method, but they combined a motion detector and a RGB
color model to screen the candidate fire pixels. They proposed a fire centroid stabilization
method based on spatio-temporal relation, in order to calculate the centroids of fire in all
frames and leverage this temporal information for the fire localization task, after passing
through a support vector machine.

2.2. Deep Learning Approaches

Although many deep learning models have been introduced for the detection and
localization of fire regions in videos, there are few that specify this region in the pixel-level
classification form, due to the lack of adequate datasets both for training and evaluation.
In 2016, Zhang et al. [23] proposed a CNN-based method for forest fire detection by passing
through the fire classifier image patches. The approach starts by checking for fire presence
in the full image, in order to continue to the next step, which localizes the image patches
in the image plane. They also built a fire detection dataset with patch-level annotations.
In 2018, Zhao et al. [24] attempted to tackle the difficulties that arise when the frames
are obtained from moving UAVs (Unmanned Aerial Vehicles). They proposed a saliency
detection method combined with a logistic regression classifier. The saliency detector
extracts the region of interest in which the presence of fire is possible, and then two logistic
regression classifiers specify if the region of interest forms a fire region or smoke region
using color and texture features. Their method prevents feature losses by using fixed
image size for training. In 2019, Aslan et al. [5] proposed deep convolutional generative
adversarial neural networks (DCGANs) for the fire detection in videos. Their approach
demands two-stage training. In the first stage, they train spatio-temporal images (temporal
slice images) and noise vectors, and in the second stage, they train the discriminator without
the generator. The same year, Yu and Chen [6] proposed a method that consists of three
stages: In the first stage, it preprocesses the video by combining motion and color feature
detection, in order to extract fire regions. Therefore, the suspected region passes through
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a spatial convolutional neural network, and the stacked optical flow of the fire region
passes through a temporal convolutional neural network. Finally, their results were fused
to give the ultimate prediction. Muhammad et al. [4] proposed a computational efficient
CNN architecture inspired by the SqueezeNet, in order to be more easily applicable in real-
life situations. They used smaller convolutional kernels and no dense or fully connected
layers at all. However, they achieved comparable results with other architectures (AlexNet,
VGG). In 2018, Dunnings and Breckon [25] experimented with three low-complexity CNN
architectures (AlexNet, VGG-16, InceptionV1) providing, as input, superipixels extracted
from frames to be classified as fire or non-fire. The InceptionV1 model provided the best
results. Next year, Samarth et al. [9] proposed InceptionV3 and InceptionV4, inspired by
InceptionV1, ResNet, and EfficientNet, with modifications in kernel sizes and the number
of convolution layers. InceptionV4 produced the most accurate results. Another approach
based on superpixels was proposed in 2020 by Thomson et al. [8], but this time, they
experimented with NasNet-A-Mobile and ShuffleNetV2 architectures, but in a simplified
form. ShuffleNetV2 gained performance compared to all other superpixel methods. Kim
and Lee [7] introduced faster region-based convolutional neural networks (R-CNNs) for
detecting possible fire regions based on their spatial features. The features included within
the bounding boxes of sequential frames are aggregated and pass through a long short-term
memory (LSTM) for classifying them as fire or not fire in a short-term period. The final
decision arises from a majority voting after combining the obtained short-term decisions.

3. Materials and Methods

The proposed method introduces a fire detection method for videos based on trans-
formers. The transformer encoder consumes the features of the frame that are under
examination and outputs attention scores that indicate the correlations between the features
of the same frame. The transformer decoder consumes features from the current frame, as
well as the output of the encoder, in order to compute attention scores between the two
representations. For the fire localization task, on top of the decoder, there is a mask head,
which predicts a segmentation mask that localizes and describes the fire in the current
frame, as can be seen in Figure 1. For the full-frame classification task, on top of the decoder,
there is a class head with a linear layer for binary classification (fire/no fire), as can be seen
in Figure 2. Therefore, the model consists of three components: a convolutional backbone,
a transformer encoder–decoder, and a mask head for predicting segmentation masks or a
linear layer for predicting the frame class.

Figure 1. This figure depicts model architecture for the in-frame fire localization task. Both the
encoder and the decoder consume the current frame that is under examination and output attention
scores. These attention scores pass through the mask head in order to produce segmentation mask
that localizes fire in the image plane.
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Figure 2. This figure depicts model architecture for the full-frame classification task. Both the encoder
and the decoder consume the current frame that is under examination and output attention scores.
The output of the decoder pass through a linear layer in order to predict the frame class (fire/no fire).

3.1. Encoder/Decoder Backbone

The model uses ResNet-101 to extract features from frames, in order to pass them
through the encoder/decoder. It is fed with a frame I ∈ R3×H×W , and it generates a
feature map I f ∈ RC× H

32×
W
32 , where H and W are the height and width of the input frames,

respectively. The output of the backbone then passes through an 1× 1 convolutional layer
to reduce the number of channels from C to d (C = 2048, d = 128) for computational
efficiency. As both the encoder and the decoder expect sequences for input, the feature map
is flattened to a feature vector V ∈ Rd× H

32×
W
32 as can be seen in Figure 3.

Figure 3. In this figure the encoder/decoder input pipeline is depicted. Both to the encoder and to the
decoder, the frame passes through the same transformations until it is fed into the encoder/decoder
blocks. Encoder and decoder inputs have the same dimensions.

3.2. Transformer Encoder

Similarly to the architecture of the transformer in [14], each encoder layer consists of a
multi-head self-attention module with M heads, where M = 8, and a feed forward network
(FFN). The encoder consists of N identical encoder layers, where N = 4, as can be seen
in Figure 4. Due to the fact that the transformer architecture is permutation-invariant, a
fixed positional encoding [26,27] is added both to the feature vector and to the input of
each attention layer. The output of the encoder is attention scores with the same shape as
its input, but in different representation.
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Figure 4. In this figure, the encoder layer architecture is depicted. The encoder of the model consists
of four identical, consecutive layers.

3.3. Transformer Decoder

The same feature vector with the encoder passes through the decoder. Each decoder
layer consists of two multi-head self-attention layers with M heads, where M = 8, and a
feed forward network (FFN). The decoder contains four identical and consecutive decoder
layers. Due to the fact that the transformer architecture is permutation-invariant, a fixed
positional encoding [26,27] is added both to the feature vector and to the input of each
attention layer. Additionally, the decoder consumes the obtained encoder attention scores,
as can be seen in Figure 5, which pass through a multi-head self-attention layer fused with
the decoder input, in order to obtain visual correlations between the two representations.

Figure 5. In this figure, the decoder layer architecture is depicted. The decoder of the model consists
of four identical, consecutive layers.
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3.4. Fixed Positional Encodings

Positional encodings in computer vision, are a method used in the transformer archi-
tecture to allow the model to understand the relative position of elements in an image. The
fixed positional encodings are pre-calculated, numerical values that are added to the input
representation of each element in the image. These values encode the relative position of
the elements, allowing the model to distinguish between elements that are near or far from
each other. The fixed positional encodings are learned during the training process and are
used to enhance the representation of the input image, thus improving the accuracy and
performance of the model. They are added to the input representation before the model
begins processing the data, allowing the model to take into account the relative position of
the elements in the image. In the proposed method, the sinusoidal positional encodings are
used. This encoding method involves adding a sinusoidal function to the image elements,
based on their position in the image [13,28].

3.5. Mask Head

For the fire localization task, on top of the decoder output, the class head and the
bounding box head that DETR [14] uses for predicting bounding box coordinates and object
classes are removed. These two heads are unnecessary in the proposed method for the
localization task, as the model predicts only segmentation masks. For the prediction, the
output of the decoder and the output of the encoder pass through a multi-head attention
layer with M heads, where M = 8, to seek correlations between their features. This
generates M attention heatmaps in low resolution. For the increase of the resolution for the
final prediction an FPN (feature pyramid network) is used, as can be seen in Figure 6.

Figure 6. In this figure, the mask head architecture is depicted. All the steps from the decoder
attention scores, until the final segmentation mask, are illustrated.

3.6. Class Head

For the full-frame classification task, on top of the decoder output, the mask head and
the bounding box head that DETR [14] uses for predicting bounding box coordinates and
panoptic segmentations are removed. These two heads are unnecessary in the proposed
method for the classification task, as the model predicts only the frame class (fire/no fire).
For the prediction, the output of the decoder pass through a linear layer, which is a fully
connected layer (FCN), where every input neuron is connected to every output neuron.
The number of the input neurons is 128, and the number of output neurons is 2, equal to
the number of classes (fire/no fire).
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3.7. Losses
3.7.1. Fire Localization

This proposed method for fire localization is trained using for loss function the combi-
nation of DICE loss and focal loss, similarly to the DETR [14] for panoptic segmentation. The
loss function can be written as:

L = LDICE + L f ocal (1)

DICE loss [29] is a measure of overlap between two sets. In computer vision, it is
widely used to measure the similarity between two images. If p is the prediction binary
mask and t is the target mask, LDICE is defined as:

LDICE = 1− 2tσ(p) + 1
σ(p) + t + 1

(2)

where σ is the sigmoid function.
Focal loss [30] on the other hand addresses the class imbalance, by downweighting the

contribution of the easy examples during training, while focusing the model’s attention on
hard examples.

L f ocal = −(1− pc)
γlog(pc) (3)

where pc is the predicted class probability and γ is the focusing parameter (γ = 0.25).

3.7.2. Full-Frame Classification

The proposed method for full-frame classification is trained using for loss function the
cross-entropy loss, the most commonly used loss function for categorical models.

LCE = −
n

∑
c=1

tclog(pc) (4)

where n is the number of classes (n = 2), tc is the ground-truth, and pc is the probability of
the cth class.

4. Experiments

In this section, the experimental results are presented. In the first subsection, the
datasets and metrics that have been used for training and evaluation are detailed. Subse-
quently, the implementation details and the qualitative results are portrayed, and finally,
the quantitative results are compared with the state-of-the-art methods.

4.1. Datasets

For the fire localization task, the model has been trained and evaluated on the furg fire
dataset [15], the only video-based fire detection benchmark that consists of fire and non-fire
image sequences and bounding box annotations for each frame. This dataset contains
24 videos published on the internet with 28,022 frames, under the Creative Commons
3.0 license. For the training and the evaluation of the proposed method, the dataset is
split into training and testing sets, similarly to in [8,9,25]. The used dataset consists of
26,339 full-frame images with 14,266 fire images and 12,073 non-fire images. The training
set consists of 18,590 images and the testing set consists of 2211 images.

Additionally, the proposed method has been trained and evaluated on the dataset
from work [25] for the full-frame classification task. It is a combination of the [20] dataset,
the [25] dataset, and videos from public sources (YouTube).

It contains 26,339 images, with 14,266 images of fire and 12,073 of non-fire images. The
training set consists of 23,408 images, and the testing set consists of 2,931 images.

4.2. Evaluation Metrics

For evaluation purposes, the proposed method was compared to prior works based
on their ability to address two different problems: (a) the full-frame classification problem
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(if fire exists in the frame or not) and (b) the fire localization within the frame problem
(predicting the exact location of fire in the image).

4.2.1. Full-Frame Classification

For the evaluation of the proposed method on the full-frame classification problem,
precision (P/PPV), true positive rate or recall (TPR), F1-score (F1), false positive rate (FPR),
accuracy (A), and frames per second (fps), according to [15], were used to compare the
different methods on two different datasets.

4.2.2. Fire Localization

For the evaluation of the proposed method on the in-frame localization task, precision
(P/PPV), true positive rate or recall (TPR), F1-score (F1), similarity (S), and frames per
second (fps), according to [15], were used to compare the different methods.

4.3. Implementation Details

For the needs of the proposed method for the fire localization task, a segmentation mask
dataset was created, based on [15]. A method called SLIC [16], which generates superpixels
by clustering pixels based on their color similarity and their proximity in image plane, was
applied at each frame, in order to divide it into superpixels. The superpixels that were entirely
included into the ground truth bounding box rectangle (red box in the top right image of
Figure 7) were labeled as fire (1), and all the other superpixels were labeled as non-fire (0).
This pipeline is depicted in Figure 7. This produces segmentation masks that specify the exact
location and shape of the fire in the frames, according to the ground truth bounding boxes, as
can be seen in Figure 7.

Figure 7. This figure illustrates the processing steps, in order to obtain the segmentation dataset from
the bounding box annotations.

The proposed method was implemented in Pytorch 1.5.1 version [31] and trained
using AdamW optimizer [32], with a weight decay at 0.0001, learning rate at 0.00001, and
learning rate for backbone at 0.00001 too. The backbone was an ImageNet-pretrained
ResNet-101 model [33] with frozen batchnorm layers. The input size was set to 480× 854,
and the batch size to 1. For the in-frame fire localization task, the probability threshold for
producing the segmentation mask was set to 0.6. This means that, if a pixel had probability
higher than 0.6, it was labeled as fire pixel, else as a non-fire pixel. The model was trained
on GeForce RTX 2070 and achieved top results on epoch 6 for both tasks.
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4.4. Evaluation Results and Discussions
4.4.1. Fire Localization Model

According to Tables 1 and 2, the proposed method outperforms all the prior works,
either on speed or on accuracy on the furg fire dataset [15]. This model has been evaluated
for both full-frame classification tasks by considering that the frame contains fire if pixels
with value 1 existed in the binary segmentation mask and fire localization task. In Table 1,
the full-frame fire classification results are presented. All the metric values given from
the proposed method, except of TPR and fps, are top compared to the prior works. More
concretely, the FPR metric drops about 66%, compared to the next lowest value of that
achieved via the InceptionV4-OnFire. F, P, and A are as high as the top results of NasNet-A-
OnFire at 0.98, 0.99, and 0.97, respectively. The proposed method achieves top performance,
as regards the speed, with a value at 20.4 fps, which is 13% higher than the ShuffleNetV2-
OnFire model. The TPR metric has not been surpassed since 2011. In Table 2, the in-frame
fire localization results are presented. As it seems, the proposed method outperforms the
prior works in precision and similarity metrics. In more detail, P and S are 0.95, and they
achieve an increase of 2% and 19% from the prior top results, respectively. However, TPR
and F values are lower than the prior methods and more concretely about 23% and 11%,
respectively, from the top method. This low TPR value is connected with the training
dataset. As mentioned above, the dataset is not human-annotated, and this adds an error
to the ground truths. In order to avoid the misclassification of non-fire pixels to fire pixels,
and consequentially, a high FPR value, some fire pixels close to the fire boundaries were
labeled as non-fire. So, the model learns to miss some of the fire pixels that are close to these
boundaries. For improving the TPR metric for the in-frame localization problem, dilation is
applied to the predicted segmentation mask. However, this dilation causes a reduction of
the precision and similarity metrics. Finally, the proposed method is much faster than the
two prior works in the in-frame localization problem, as can be seen in Table 1. Additionaly,
Figure 8, depicts the model’s accurate localization performance on some sample frames
from testing set.

Table 1. This table presents the quantitative results of the proposed method on the furg fire
dataset [15], in comparison with prior works for the full-frame classification problem. The bolded
values highlight each metric’s top value

Models TPR FPR F P A fps

Chenebert, A., et al. [20] 0.99 0.28 0.92 0.86 0.89 0.16
InceptionV1-OnFire 0.92 0.17 0.90 0.88 0.89 8.4
InceptionV3-OnFire 0.94 0.07 0.94 0.93 0.94 13.8
InceptionV4-OnFire 0.94 0.06 0.94 0.94 0.94 12
NasNet-A-OnFire 0.98 0.15 0.98 0.99 0.97 5
ShuffleNetV2-OnFire 0.94 0.08 0.97 0.99 0.97 18
Ours 0.97 0.02 0.98 0.99 0.97 20.4

Table 2. This table presents the quantitative results of the proposed method on the furg fire
dataset [15], in comparison with prior works for the in-frame fire localization problem. The bolded
values highlight each metric’s top value.

Models TPR F P S

Chenebert, A., et al. [20] 0.98 0.90 0.93 0.80
InceptionV1-OnFire 0.92 0.88 0.84 0.78
Ours 0.75 0.80 0.95 0.95
Ours+dilation(3 × 3, 4iter) 0.78 0.81 0.93 0.94
Ours+dilation(3 × 3, 5iter) 0.79 0.81 0.93 0.94
Ours+dilation(3 × 3, 6iter) 0.80 0.82 0.93 0.94
Ours+dilation(3 × 3, 7iter) 0.80 0.82 0.92 0.94
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Figure 8. This figure illustrates qualitative results from the testing set. Red rectangle: prediction, blue
rectangle: ground truth.

4.4.2. Full-Frame Classification Model

In Table 3, the quantitative results of the proposed method for the full-frame classifica-
tion task and the state-of-the-art methods on the [25] dataset are presented. According to
this, all the metrics given from the proposed method are surpassing the prior works, except
the FPR metric. More concretely, the TPR and F metrics are 1% higher than the top prior
works, the A and P metrics are equal to the top prior works, and the FPR metric is 33.3%
higher than the top prior work. According to this, the proposed full-frame classification
method is the only method that gives the highest values in almost all metrics.

Table 3. This table presents the quantitative results of the proposed method on the [25] dataset,
in comparison with prior works for the full-frame fire classification problem. The bolded values
highlight each metric’s top value.

Models TPR FPR F P A

InceptionV1-OnFire 0.96 0.10 0.94 0.93 0.93
InceptionV3-OnFire 0.95 0.07 0.95 0.95 0.94
InceptionV4-OnFire 0.95 0.04 0.96 0.97 0.96
NasNet-A-OnFire 0.92 0.03 0.94 0.96 0.95
ShuffleNetV2-OnFire 0.93 0.05 0.94 0.94 0.95
Ours 0.97 0.04 0.97 0.97 0.96

5. Conclusions

In this work, a video fire detection method based on transformers is presented. It
is a simplified architecture of DETR [14], and it is capable of recognizing fire in frames
fast and accurately with a very low false positive rate. The paper presents a full-frame
classification model that achieves top performance in almost all metrics on the [25] dataset
and an in-frame localization model that achieves top performance in almost all metrics for
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the full-frame classification task on the [15] dataset. Moreover, it achieves top performance
for precision and similarity metrics and top speed, compared to the prior works for the
in-frame fire localization task on the [15] dataset. The creation of a human-annotated
segmentation dataset with fire videos would increase the FPR metric in this work, but it
would also be a big step for the research community in the field of fire detection in videos.
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