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ABSTRACT

In this paper, two methods are proposed to analyse skeleton data recorded by the Kinect
v2 sensor using Kalman filter and Tobit Kalman filter in order to minimize the noise
of the acquisition device due to occlusions, self occlusions e.t.c. The skeleton data are
three-dimensional spatial coordinates that record movements of an individual’s joints.
The variance of the noise process is estimated using the likelihood function. In order to
include into the model restrictive conditions based on the joints displacements per frame,
we apply the Tobit Kalman Filter. Experiments on skeleton data show that the Tobit
Kalman filter corrects better the noise than the Kalman filter.
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1. INTRODUCTION

Skeleton tracking motion is a scientific area studied by means of depth sensors
(i.e., sensors using the depth coordinate as basic coordinate), proved to be very
useful in many applications, such as monitoring of activity recognition [Zhen et
al (2015), Zhang et al (2013)] and health tracking [Galna et al (2014)]. In the
present paper it is shown that the Kinect 2 sensor is able to achieve skeleton
tracking performance in a low-cost manner for activity recognition; this sensor is
able to track at most 25 joints.

However, Kinect sensor generates a lot of noise because of self-occlusion and lack
of accuracy in fast movements. Especially when the skeleton’s joints are occluded,
they often appear to be shifted in a no reasonable manner.

The method presented in this paper is based on appropriately smoothing the
joints’ spatial coordinates. In order to smooth the coordinates, various common
stochastic filters are used, e.g. filters based on moving average, Savitzky-Golay



filter e.t.c. [Yong et al (2015)], without any restrictions in joints’ movements. Now
we want to develop a model which will not allow the joints to move abnormally,
and without affect the real movements. For this reason, we studied the joints’
speeds by carrying out various experiments using groundtruth sensors. Then we
applied the Tobit Kalman filter by taking into account the speeds restrictions.
In [Sungphil et al (2016)] a method based on the use of multiple Kinect sensors for
skeleton tracking is proposed. They achieve in determining the reliability of each
3D joint position by employing a data fusion method based on Kalman filtering
using multiple Kinect sensors. They take into account the measurement variance
of noise for determining the contribution of an observation to the fused measure-
ment. Additionally, they explain how to estimate the measurement variance for
each one of the measurements. Finally, they present the average 3D position error
of ten activities produced by their method, by a single Kinect and the average
derived by multiple Kinect sensors, respectively. Almost in all cases, their method
appears to give better results than the standard Kalman filter.

In [Berti et al (2014)] Kalman filtering is applied for robotic arms tracked by
Kinect sensors. They denoise only the depth coordinate using Kalman filter
methodology but they do not explain clearly the estimation process concerning
the matrices involved. In their results presented through figures, it is obvious that
the data are denoised, however the error reduction is not evaluated. In [Kong et al
(2013)] a Kalman filter is described briefly to smooth 2D movements of a joint. In
contrast with the aforementioned methods, the video data are derived via CCTV
(Closed Circuit Television). Thus, they describe in which way they construct their
joints’ body model. Other scientists who are dealing with activity recognition via
neural networks, use a simple Savitzky-Golay smoothing filter in order to correct
the data [Yong et al (2015), Wentao et al (2016)]. This method is based on the
previous, as well as the current and the two following observations.

In Section 2 the Kalman filter procedure along with the related likelihood fun-
ction is provided. In Section 3 we describe the Tobit Kalman filter. In Section
4 the Kalman filter and Tobit Kalman filter approach for skeleton tracking is
established. Finally, in Section 5, conclusions are presented.

2. KALMAN FILTER

In this section we describe briefly the Kalman filter (KF') [Peter (1979)], abbre-
viated as KF, which is used for estimating the unknown state vector x € R™, of a
discrete-time stochastic process that is governed by the linear stochastic difference
equation

Xp+1 = Axy + Wi (1)

with a measurement (observation) y € R given by

v = Hxy, + vy, (2)



where wi, ~ N(0,Q), vy ~ N(0,R), and N(u,X) denotes the normal distribu-
tion with mean value g and covariance matrix 3. The matrices A, H are the
transition and observation matrices, respectively.

We define by %, the a priori state estimate at step k by assuming knowledge of
the process history prior to step k£ and Xj the a posteriori state estimate at step
k by assuming that the measurement y, is given.

The KF uses a form of feedback control; the filter firstly estimates the process
state at some time and secondly it obtains feedback in the form of (noisy) mea-
surements. So, the process of KF evolves in two stages: the predict stage and the
update stage, determined by the associated equations:

The Predict Stage

X, = AXp-1, (3)
P, = AP, AT+ Q. (4)

where P, and P_; are the covariance matrices of the errors of the a priori and
a posteriori state estimates, respectively.
The Update Stage

K, =P H'(HP H" + R)™, (5)

where K}, stands for the Kalman Gain (matrix), and
X =%, + Ki(yy — Hxp), (6)
P,=(I-KH)P,. (7)

The error of the estimation for one step ahead and its variance are given by
u; =y, — HX, and F, = HP, H] + R.

In applications of the filter, the measurement noise covariance R is usually mea-
sured prior to the filter operation or it is known. The determination of the process
noise covariance matrix Q is more difficult and has to be estimated. In order to
estimate Q, the Maximum Likelihood Estimation (MLE) method can be used; the
associated log-likelihood function for n measurements has the form [Tusell (2011),
Proietti et al (2012)]

n

n 1 Toa—

LogL(yy, . ¥n) = —5 log2m — 5 > (log(|Fxl) + uf Fy uy), (8)
k=1

where n denotes the number of measurements and |Fj| the determinant of the

matrix Fj. The maximum likelihood estimators (MLEs) are most attractive be-

cause of their asymptotic properties. Under regularity conditions [Green (2002)],

the maximum likelihood estimator has the following asymptotic properties:



Consistency: the estimator 6 tends to a parameter 6 .
Asymptotic normality: that is 6 ~ N(6p,1(6y)~'), where

I(6p) = —FEo(9%InL/063)

Asymptotic efficiency: 0 is asymptotically efficient and achieves the Cramer
Rao lower bound.

Invariance: The maximum likelihood estimator of 4o = () is ¢() if ¢(fy)
is a continuous and continuously differentiable function.

3. TOBIT KALMAN FILTER

In this section we describe the Tobit Kalman filter [Bethany (2014)], abbrevi-
ated as TKF, which provides a classification scheme for censored models [Bethany
(2014), Tobin J (1958)]; these classes depend on the type of censoring and include
also the cases of censoring, that depends on other variables. In the applications
cases of censoring, the censored measurement model provides a measurement,
either in knowing the exact value (it belongs to the uncensored region), or in
knowing that the value lies into an interval.

In the general case of scalar measurements, the Tobit model is referred to as the
censored regression model determined by (9),

yp = hxp + vg,
y?;, Tnin < y; < Traz
Yk = § Tmin, yz < Tnin (9)

Tmax) yz > Tmaxa

where ¥} is the latent (hidden) variable, y;, is the measurement, h is an arbitrary
scalar, Tinin, Timaee are the lower and upper thresholds-limits respectively and vy
is a Gaussian random variable with mean 0 and variance o2 . By (9) it is obvious
that the Tobit Kalman Filter determines a non-linear process.

The standard KF doesn’t provide optimal estimates of the unknown states vector
when the measurements are censored; this happens because the assumptions of the
KF are not met when the measurement is censored. In order to face the problem
of censored measurements, we propose the TKF defined by [Bethany (2014)]

Xpt1 = Axy + Wy,

vi = Hxy + vy,
with
Yri» Timing < Yp; < Tmaa,i
Yki = \ Tmini  Ygi < Tmin,i 1=12,..,m (10)
Tnaz,is  Yri > Tmaz,i-



where the noises wy and vy, are defined by equations (1), (2) and y;, = (Yk.i)i=1,..m
v}, are defined as the saturated observation and latent variable respectively. Next
we prove analytically for the case H = diag(h1, ..., hy,) and R = diag(r?, ...,r2)
the following useful Lemma 3.1.

Lemma 3..1. The probability function of the it component of the measurement
given the state vector is

I

h;x
7‘) - qb(yklrkz)u(yk,z - Tmin,i)u(Tmax,i - yk,i)

)

—I—(I)< min,i - 7 k’l>5(Tmin,i . yk,i)
i

Tmazi - hz 7
+ <1 - ® (M))NTmam — Yki),

where ¢ and ® are the probability and cumulative distribution function of standard
normal distribution respectively, § stands for the Kronecker delta function and u
for the Heavyside function.

Proof. When the i component of the latent variable belongs to the uncensored
region, (Tiin, Tmaz), we get by (10) that

Yk,i = hi%pi + vgi, (11)

where vy, ; ~ N(0,72). Thus by (11), the cumulative distribution for the measure-
ment Yy ; is
Fykilzei) = P(Yei < Yk,

= P(hizk,; + vk < Yki)

p< _yk—’wk>

T T

_ g Yri =itk | oy,
i

1 i — hiwp,
fnilzn) = ¢(yerk> (12)

7 7

The probability of the i*” component of the latent variable to belong into the
censored region from below is

Pk, = Tinin,ilTki) = P(Yi < Tin,il Tk,
= P(hizg; + vk < Tningi)




and thus,
P(yri = Tinini

Toingi — hixp;
Thi) = @(W) (13)

ri

In the same way it is proved that

(14)

T b
P(yri = Tmazilvr,i) =1 — <I><ma“1x’“>

T

By (12)-(14) the probability distribution function for the measurements y, is
derived given the state vector xy. O

We denote by Pyn i, Prink, Pmas,k the probabilities of a measurement to be
uncensored, or censored from below or censored from above, respectively, at time
k. Then by Lemma 3.1 it is derived that

¢<Tmax,1h15ck,1> B (I)<Tmm,1h1@k,1)
T1 T1

Py i = diag , (15)

(I) <T7rmw,m_hm§3k7m> _ @ (Tmin,m_hmihm>
™m m
@ <Tmin,1h1£k71 )
1

Pmin,k = dzag ; (16)

(D (Tmin,m_hmiam)
™m
1 o (b (Tmax,lhlj]“l)
T1

Paz i = diag . (17)

_ <Tmax,mr—hm:e,;,m>

By taking into account the matrices (15)-(17) and the properties of truncated
normal distribution [Burkardt (2014), Tobin (1958)], we get that the expected
value of the measurement when censored and uncensored measurements are in-
cluded given the a priori estimation of the state vector has the form

E(yk) = Pun,k(Hf{]; + R%lk) + Pmin,kTmin + Pmam,kTma:c (18)

where Thae = (Tmaw,i)i=1,...m> Tmin = (Tmin,i)i=1,.,m and the parameter [ at
time k is the inverse Mill ratio [Burkardt (2014)],



Tmax,lfhlj];l Tmin,lfhlj];l

¢ T —¢ T
Tmaz,m_hm-i’;;m Tmin,m_hm-i‘;;m
¢ Tt —¢ Tt

The covariance matrix of the measurement is given by
R = R(I + P diag(cy) — dmg(zk)?) (19)

where the parameter ¢, [Burkardt (2014)] is given by

Tmin,l*hli]z!l(é Trmin—h1Z; Tmaa:,l*hli,;ld) Trmaz,1—h1Zy o
r1 r1 1 1

Tmin,m_hnli'];m ¢ <Tmin,m_h7ni‘k7m> _ Tmaw,'m_hmilgm ¢<Tvnaw,m_h'm£k’m>

Tm Tm Tm Tm

¢, = diag

The Tobit Kalman Filtering process is defined as [Bethany A (2014)] :
The Predict Stage:

% = A%y, (20)
P, = AP, AT + Q. (21)
The Update Stage:

R, =P, H'P,,,
R, = P, ;HP, H'P,,  + R},

K, = RR; ", (22)
Xk =X, + Ki(yy — E(yilX;)), (23)

4. IMPLEMENTATIONS

In the present paper we use the Microsoft Kinect sensor 2 to record 3D point
sequences of a human skeleton in motion and our aim is to denoise the coordinates
for every joint in order to improve the representation of the movements. For this
reason, in our first approach, we use a KF for each one of the joints separately;
the input includes the joints’ coordinates [z, y, z] (measurement) and the outputs
the denoised coordinates (state vectors).

Thus, we define the transition matrix A and the observation matrix of the model,
H as



1 00
H=1{0 1 0|,
_0 1_
[1 0 0]
A=1[010
0 0 1]

Next, we have to estimate the covariance matrix for the process noise, Q.
Firstly we assume that the entries of the covariance matrix of the measurement
noise, R, are of the order 1072, Then, by the likelihood function (8), the entries
of the matrix Q can be derived. Interestingly we notice by various joints’ move-
ments, that the entries of Q appear to be smaller than those of matrix R, and
generally they depend on the accuracy of the Kinect sensor and the joints’ speed.
Concerning slow motions, the values are experimentally found to be smaller than
10~* and for faster motions they lie between 10~2 and 1072. In order to create
a general model for denoising Kinect’s measurements, in which we will not esti-
mate the matrix Q for every time-window, because this is time consuming, we
can assume that

1 00
Q=0002|0 1 0
0 01

In our first experiment, a man throws a ball with his right hand, and this
movement is recorded by Kinect; the video consists of 266 frames (almost 8.8667
sec.). Many joints and especially the joints on the right side were self-occluded.
So, we used the KF as described in Section 2 in order to denoise the data, i.e.,
to reveal the hidden coordinates due to the occlusion. It is obvious by F'ig.1 and
2 that the KF smooths the spatial coordinates without affecting the movement,
i.e., it does not provide oversmoothing of the motion.

In other experiments, an individual seats in front of the Kinect sensor and the
skeleton appears to fall down unnaturally; apparently this is due to some noise
of Kinect. So, we used Kalman filtering, but the noise could not be corrected
satisfactorily. In order to correct the noise, we studied many recordings by the
groundtruth sensor, Vicon; we observed that the velocity of spatial coordinates z
and z did not exceed 31 cm per two consecutive frames for every joint, while the
coordinate y did not exceed 18 cm respectively. Thus we took these restrictions
into account, in order to correct the data. So we constructed a TKF with limits
T nin and T4, for the spatial coordinates [z, y, z] as follows,

Tmaz,k = (ik_1 4+0.31, 91 +0.18, 2,1 + 0.31),

Tink = (Zp—1 — 0.31, Jr—1 — 0.18, 2,1 — 0.31),
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Figure 1: The spatial coordinates for the right hand as they result by Kinect (blue) and
the Kalman filter (red)

where T,,q0 1 and Ty, are the limits of the TKE at time & which depend on
the previous estimation of spatial coordinates. So by (10), for the measurement
Vi = [Tk, Yk, 2] at time k we get

Yri» Ting < Yri < T,

m az,k
L — i * % ;o
Yki = § Toingr Yii < Think i=1,2,3
i * %
Tmaz,k’ yk,i > Tmaa:,k'

The aforementioned TKF model can appropriately smooth big abnormal
movements due to Kinect’s errors. Apparently, if T;ﬁlm  — —00 and Tfmz > 0
(i.e., the range of TKF’s state values becomes too big) the TKF becomes the stan-
dard KF. As can be seen in Fig.3 the skeleton motion of the TKF (green) does not
exhibit any unexplainable fall. Notice that the standard KF can correct the noise
but not as well as the TKF. In our experiments, the TKF exhibits skeleton falls
till almost 4 cm, which is an acceptable bound. On the other hand the standard
KF exhibits skeleton falls more than 4 and till 8 cm per (two) consecutive frames,
which is not realistic. This conclusion is more clear in Fig.4, where the head’s
spatial coordinate y; for each frame k is illustrated.
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Figure 2: The spatial coordinates for the left hand as they result by Kinect (blue) and
the Kalman filter (red)

Figure 3:  The skeletons of Tobit Kalman filter(green), Kalman filter (red) and
Kinect(blue) at the frame of the fall.

5. CONCLUSION

The aim of this paper is to improve skeleton tracking, using a single Kinect
sensor, which generates error in recordings due to occlusion, self-occlusion e.t.c..
So, we propose to use a Tobit Kalman filter for skeleton tracking in real time.
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Figure 4: The head’s spatial coordinate yy, for each frame k of Tobit Kalman filter
(green), Kalman filter (red) and Kinect (blue).

In this approach we have to define the limits T, 1 and T, 1 in a reasonable
manner for evrey time k. For that purpose we considered a lot of skeleton data,
with various joints’ movements, which were obtained by means of the groundtruth
sensor, Vicon.

The covariance matrix of the noise process Q, using Kalman filtering procedure
was estimated via maximum likelihood estimation. Between the two filters, i.e.,
the standard Kalman filter and the Tobit Kalman filter, the latter was more ac-
curate performing a better skeleton tracking. Furthermore, in some frames when
the skeleton collapsed due to occlusion, the method of the Tobit Kalman filter
proposed, corrected better the error in recordings than the standard Kalman fil-
ter.

IIEPIAHYH

Yty napovoa epyaocto, avahbouue dedouéva and v xducpa Microsoft Kinect
2 yenowornowvtog @ihteo Kalman xou Tobit Kalman yio tnv ehayictonoinon tou
YopUPou mou epgaviletar ota 6edouéva. To dedouéva apopoly TEIBIECTATES YWEL-
%€C CUVTETUYUEVES TTOU XATAYRAPOLY XIVACELS TV apUpmoEmY eVOg avip®Tou, oTig
omoleg eugavilovtar oedidato TNV oxelBeio Twv PETEHoE®Y. XENoWOTOVUE Té-



eo am6 To xhooixd pihteo Kalman xo to ®ihtpo Tobit Kalman, npoxewévou vo
GUUTEPLAGBOUNE GTO YOVTELND TERLOPIoTIXES cLVITxeS e Bdon To avlpwroueTEind
oToLyEldl, Xo CUYXEXPUIEVA TIC ATOCTACELS HETOED Blopdpwy oplp®oewy. 2To TéA0G
ToEOUGLALOVUE TPOCOUEWMTELS Yol TNV %(VNoT TOU OXEAETOU TpLY Xou PETE TN Yerion
WV PIATEOV.
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