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Abstract
The proliferation of deepfake technology poses significant challenges due to its potential 
for misuse in creating highly convincing manipulated videos. Deep learning (DL) tech-
niques have emerged as powerful tools for analyzing and identifying subtle inconsistencies 
that distinguish genuine content from deepfakes. This paper introduces a novel approach 
for video deepfake detection that integrates 3D Morphable Models (3DMMs) with a hybrid 
CNN-LSTM-Transformer model, aimed at enhancing detection accuracy and efficiency. 
Our model leverages 3DMMs for detailed facial feature extraction, a CNN for fine-grained 
spatial analysis, an LSTM for short-term temporal dynamics, and a Transformer for cap-
turing long-term dependencies in sequential data. This architecture effectively addresses 
critical challenges in current detection systems by handling both local and global tempo-
ral information. The proposed model employs an identity verification approach, comparing 
test videos with reference videos containing genuine footage of the individuals. Trained 
and validated on the VoxCeleb2 dataset, with further testing on three additional datasets, 
our model demonstrates superior performance to existing state-of-the-art methods, main-
taining robustness across different video qualities, compression levels and manipulation 
types. Additionally, it operates efficiently in time-sensitive scenarios, significantly outper-
forming existing methods in inference speed. By relying solely on pristine, unmanipulated 
data for training, our approach enhances adaptability to new and sophisticated manipula-
tions, setting a new benchmark for video deepfake detection technologies. This study not 
only advances the framework for detecting deepfakes but also underscores its potential for 
practical deployment in areas critical for digital forensics and media integrity.
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1  Introduction

In recent years, advancements in artificial intelligence (AI) and machine learning (ML) 
have led to the proliferation of deepfake technology, which has the potential to both amaze 
and concern the world [1]. Video deepfakes are highly realistic manipulated videos gener-
ated using advanced AI algorithms [2]. These digital forgeries can convincingly replace a 
person’s likeness with another, create false scenarios, and even make individuals appear to 
say or do things they never did. As video deepfakes become increasingly sophisticated and 
accessible, the risk of their malicious use grows significantly, posing severe threats to pri-
vacy, security and trust in media content [3]. The implications are vast and varied, touch-
ing on legal, ethical and social aspects. For instance, the potential use of video deepfakes 
in disinformation campaigns can undermine democratic processes, influence elections and 
incite social unrest. Similarly, in the personal domain, unauthorized video deepfakes can 
lead to severe violations of privacy and harm to individual reputations.

Detecting video deepfakes has emerged as a critical research area to safeguard against 
misinformation and manipulation. While early video deepfakes were relatively easy to spot 
due to their obvious flaws, such as unnatural facial movements or inconsistent lighting, the 
rapid progress of DL, a subset of ML, has made it increasingly challenging to distinguish 
deepfake videos from pristine ones with the naked eye alone [4]. As a result, researchers 
have had to turn to advanced AI-based approaches to develop robust and accurate video 
deepfake detection systems [5, 6], including convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), among others [7]. These techniques excel in processing 
and analyzing complex visual and temporal data, thereby identifying subtle discrepancies 
that indicate manipulation.

Although numerous methods for detecting video deepfakes have been proposed, many 
of them often struggle with problems such as overfitting, high computational demands 
and a lack of generalizability across various datasets and deepfake creation techniques [8]. 
Additionally, the typical training approach for these systems involves using both authentic 
and manipulated data [9]. This requirement poses further challenges, particularly due to the 
imbalance in available datasets, where genuine videos far outnumber the deepfakes. This 
disparity can lead to biased outcomes in detection capabilities, favoring the detection of 
real content over fake.

Given these challenges, the present study proposes a novel approach to video deepfake 
detection that leverages the capabilities of CNNs, LSTMs and Transformers, aiming to sig-
nificantly enhance detection accuracy and efficiency in identifying manipulated content. 
The proposed methodology employs 3DMMs to extract detailed facial biometrics from the 
input videos. This biometric data serves as a basis for our hybrid CNN-LSTM-Transformer 
model, which is specifically trained to extract features from a target identity and learn 
unique characteristics that distinctly differentiate it from any other identity or deepfake. 
These learned features serve as a benchmark against which characteristics computed from 
potentially manipulated test videos are compared. This enables the detection of discrep-
ancies that signify manipulation, enhancing the model’s ability to accurately distinguish 
authentic content from forgeries. Remarkably, the proposed model is trained exclusively 
with pristine data, ensuring it focuses on authentic facial features and behaviors. This 
approach makes the model agnostic to specific manipulation techniques, thereby improv-
ing its ability to accurately distinguish authentic content from forgeries, regardless of the 
techniques used to generate them.

Overall, the key contributions of this work are:



40619Multimedia Tools and Applications (2025) 84:40617–40636	

•	 It employs 3D Morphable Models (3DMMs) for detailed facial biometrics extraction 
and a hybrid CNN-LSTM-Transformer model that combines fine-grained spatial analy-
sis with short- and long-term temporal dynamics, thereby enhancing the detection of 
subtle manipulations in video content.

•	 The proposed model is designed to process large volumes of video data efficiently, ena-
bling optimized deepfake detection capabilities.

•	 The model demonstrates strong performance across different levels of video compres-
sion, quality settings and types of manipulation, ensuring its utility in diverse real-
world applications.

•	 By training exclusively with unmanipulated data, the proposed model avoids the com-
mon pitfalls of overfitting to specific artifacts, and remains adaptable to new and sophis-
ticated deepfake techniques.

The remainder of this paper is structured as follows: In the 2 section, background knowl-
edge for video deepfake detection is presented and related state-of-the-art DL methods are 
reviewed. In the 3 section, the research methodology is presented in detail, while in the 4 
section, the performance of the proposed model is evaluated and discussed. Finally, the 
conclusions of the study are summarized in the 5 section.

2 � Related work

The task of video deepfake detection usually involves leveraging various computer vision 
and ML methods to analyze and classify images or videos as either genuine or manipulated 
[10]. During the last few years, several researchers have leveraged massive datasets of pris-
tine and deepfake images or videos to train DL or ML models capable of identifying subtle 
artefacts and patterns indicative of manipulation. In particular, Li and Lyu [11] developed a 
CNN-based approach that detects AI-generated deepfake videos by capturing face-warping 
artefacts, while Güera and Delp [12] proposed a temporal-aware system that is composed 
of a CNN for frame feature extraction and a long short-term memory (LSTM) network 
for temporal sequence analysis to detect whether a video has been subject to manipulation 
or not. Afchar et  al. [13] suggested two DL approaches, a CNN and a residual network 
(ResNet), that focus on the mesoscopic properties of images to detect face tampering in 
videos.

At the same time, Agarwal et  al. [14] introduced a biometric-based forensic method 
that combines static facial recognition and temporal behavioral traits, which are learned 
through a CNN, for the detection of face-swap deepfakes, while a study by Wang and 
Dantcheva [15] compared three different CNN-based models, namely 3D ResNet, 3D 
ResNeXt and I3D, for detecting video manipulations, such as face-swap, facial reenact-
ment [16], and neural textures [17]. Another work by Wodajo and Atnafu [18] utilized a 
Convolutional Vision Transformer (CvT) to identify videos with evidence of manipulation, 
where the CNN extracts learnable features, and the Vision Transformer (ViT) [19] receives 
the learned features as input and classify them using an attention mechanism.

Moreover, Mo et al. [20] employed a CNN to separate fake from real images using two 
different image datasets for the experiments, one including both the original face and back-
ground, and one containing cropped images that represent only the facial region of the 
person. A study by de Rezende et  al. [21] applied a ResNet-50 on raw images to detect 
computer-generated images. Şengür et al. [22] combined a pre-trained CNN with a support 
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vector machine (SVM) to detect face liveness using raw images as input to the hybrid 
model, while another study by Hsu et al. [23] trained a DenseNet using both real and GAN-
generated fake images.

On the other hand, Dong et  al. [24] proposed the Identity Consistency Transformer, 
which receives images as input and learns a pair of identity vectors, one for the inner face 
and one for the outer face, in order to detect identity inconsistency in inner and outer facial 
regions. The model is trained both on real facial images and images that resulted from 
swapping the inner face of two real faces belonging to different identities. Also, Giudice 
et  al. [25] employed the discrete cosine transform (DCT) in order to detect anomalies 
in GAN-generated deepfakes. Moreover, Kosarkar et  al. [26] used a simple CNN struc-
ture to separate real and manipulated videos on a frame-by-frame basis, whereas Wodajo 
et al. [27] trained a generative CvT on several well-known benchmark deepfake datasets 
including the Deepfake Detection Challenge (DFDC) dataset [28] and the FaceForen-
sics +  + (FF + +) [29] dataset, among others, to classify real and fake videos.

All of the approaches presented above are of great interest; however, they all use raw 
video frames as input for the proposed models, which may limit the ability of the models 
to exploit hidden information that is present in the frame. For this reason, several research-
ers have tried to exploit additional features that can be derived from a manipulated video 
by applying some feature extraction before feeding the model. More specifically, D’Avino 
et al. [30] presented a hybrid approach that combines an autoencoder (AE) and an LSTM 
network for video forgery detection, utilizing the network’s ability to learn temporal 
dependencies and detect manipulated video frames. The authors computed the raw image 
residuals via high-pass filtering, then quantized them, and finally used them to extract a 
histogram of co-occurrences which was fed as input to the DL model. On the other hand, 
a study by Amerini et al. [31] proposed the use of optical flow fields as input to two semi-
trained models, namely VGG16 and ResNet-50, to detect deepfake videos by exploiting 
possible inter-frame dissimilarities.

Furthermore, Yang et  al. [32] proposed an SVM for image deepfake detection that 
receives as input a feature vector containing the difference in estimated head poses. This 
difference is derived by comparing head poses estimated using all facial landmarks and 
head poses estimated using only the central facial region. Agarwal et  al. [33] suggested 
using the frequency spectrum of raw images as input to a hybrid model that consists of a 
CNN and a capsule layer in order to detect GAN-generated fake images, while Frank et al. 
[34] trained a CNN on discrete cosine transform (DCT) frequency spectra of raw images 
for the same purpose. Another study by Tan et al. [35] converted facial videos into graphs 
to capture both facial structural information and facial action dependencies, and trained a 
graph convolutional network on them to classify videos as real or fake.

Nonetheless, all the above studies, both the ones that use raw frames as input and those 
that perform some feature extraction before feeding the DL/ML models, have a common 
feature that they follow a global model training approach; this means that the models are 
trained using a mixture of real and fake images from multiple individuals in order to learn 
how to answer to a specific binary question; that is, “is the given image/video real or not?”, 
no matter the depicted individual. This method, although time efficient, limits the model’s 
generalizability, and can lead to overfitting and, thus, low performance in predicting new 
unseen data.

On the contrary, a more personalized approach would require more time for the train-
ing stage, since the model has to be fine-tuned for each individual input; however, in this 
way, a more accurate and targeted prediction could be achieved. Such a study is the one by 
Cozzolino et  al. [36], who introduced ID-Reveal, a novel identity-aware video deepfake 
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detection method that learns temporal facial features using adversarial training. The authors 
propose a novel scheme in which the DL model is trained only on real videos containing 
many different subjects and investigates whether the face under test preserves all the biom-
etric traits of the involved subject (both structural and motional), instead of answering the 
binary question “real or fake” as is usually done.

Nevertheless, in order to increase the predictive capacity of their model and ensure that 
its predictions are based also on behavioral instead of just visual information, a generative 
adversarial network (GAN) is applied as follows: the generator creates manipulated videos 
by combining the appearance of the involved subject with the expressions of a second one, 
while the discriminator, which is the already trained DL model, tries to predict whether the 
input video is pristine or fake. The above process is repeated every time a different indi-
vidual needs to be identified, which increases its predictive ability on the targeted dataset 
and provides generalization to different manipulation methods.

Also, another study by Cozzolino et al. [37] trained both an audio and a video DL net-
work using segments of real talking-face videos in order that the two models learn how to 
extract features that are close to ones extracted from segments of the same identity, while 
maintaining a considerable distance from segments associated with different identities. 
To achieve this, the authors proposed four different similarity indices, namely an audio, a 
video, an audio–video, and a fusion similarity index, which combines the previous three.

Both the last two approaches transform the “real or fake” classification problem into a 
“is this really the person of interest?” question, which creates the conditions for training 
models with a higher generalizability, since they are focused on extracting distinctive fea-
tures of the depicted subject and not on identifying specific forgery techniques, which may 
be the case for the rest of the aforementioned studies. This is also supported by the fact 
that they use only pristine videos for training their models. However, these methods could 
be said to have a potentially important drawback, which is that they presuppose the exist-
ence of a set of reference videos in addition to the test one in order to make the required 
comparison.

3 � Materials and methods

3.1 � Datasets

3.1.1 � Training

The primary dataset used in this study is VoxCeleb2 [38], a large-scale audio-visual dataset 
derived from videos uploaded to YouTube. It features over 1 million utterances by 6,112 
unique identities across 150,480 videos. VoxCeleb2’s diversity is a critical asset; it includes 
a near gender-balanced selection of speakers (61% male) from a broad array of ethnicities, 
accents, professions and ages, which supports the development of robust deepfake detec-
tion models that are effective across diverse demographic groups.

This dataset is noted for its challenging recording conditions, encompassing a wide 
range of visual and auditory environments, including interviews from red carpets, speeches 
in large stadiums and other noisy outdoor settings, as well as quiet indoor studio talks, 
professionally shot multimedia and low-quality handheld video recordings. These envi-
ronments introduce natural variances in background noise, such as chatter, laughter, over-
lapping speech and room acoustics, which are critical for training models to recognize 
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authentic audio cues in real-world scenarios. The dataset also provides comprehensive vis-
ual data, with video segments captured “in the wild”, characterized by variations in pose, 
lighting, image quality and motion blur.

By training exclusively on this pristine dataset, our model learns to accurately identify 
genuine biometric and behavioral patterns. This foundational knowledge is crucial when 
the models are subsequently tasked with detecting deviations from these established norms 
in manipulated media not present during training. Therefore, while VoxCeleb2 does not 
contain manipulated videos, the depth and realism of its data are invaluable for preparing 
models to handle a variety of deepfake scenarios, enhancing their predictive accuracy and 
generalizability in real-world applications.

It is also worth mentioning that, although VoxCeleb2 contains both visual and audio 
information, this study focuses solely on the visual components. Audio data is not consist-
ently available in video deepfakes, making reliance on visual cues essential. This strategic 
decision ensures that our detection methodology remains applicable across all deepfake 
scenarios, including those where audio is absent or remains unaltered. Leveraging the “in 
the wild” nature of the visual data, we aim to develop a detection system that is both effec-
tive and reliable, enhancing the robustness of our model even in the absence of audio.

3.1.2 � Testing

To rigorously evaluate the performance and generalizability of the model trained and vali-
dated on the VoxCeleb2 dataset, three additional datasets specifically designed for testing 
deepfake detection capabilities are utilized. These datasets are chosen to complement the 
training data by presenting new challenges and scenarios that help assess the robustness of 
the proposed model under diverse conditions.

The first of these, the DeepFakeDetection (DFD) [39] dataset from Google AI lab, com-
prises 363 original sequences featuring 28 paid actors across 16 different scenes, along 
with 3,068 manipulated videos produced using a face-swapping algorithm known as Deep-
Fakes. The dataset provides two distinct video quality settings: high quality (HQ), where 
videos are compressed using a constant rate quantization parameter of 23 with H.264 
encoding, and low quality (LQ), where a higher quantization parameter of 40 is applied. 
These settings allow for the evaluation of the performance of the proposed model under 
varying degrees of compression and potential video degradation.

The second testing dataset, Celeb-DF [40], includes 590 original videos sourced from 
publicly available YouTube clips featuring 59 celebrities from diverse genders, ages and 
ethnic groups. Alongside these are 5,639 DeepFake videos, totaling more than 2 million 
frames. These DeepFake videos are generated using an improved synthesis method that 
significantly enhances the overall visual quality compared to earlier datasets. The high 
quality and realism of the manipulations in the Celeb-DF dataset offer a solid platform for 
validating the effectiveness of our detection system under conditions that closely mimic 
real-world scenarios. The diverse demographic characteristics of the subjects in Celeb-DF 
further ensure that our model is tested across a broad spectrum of populations, enhancing 
its generalizability and robustness.

The third dataset used for testing is FF +  + [29], a large-scale dataset specifically 
designed for evaluating facial image manipulation detection. FF +  + comprises 1,000 
pristine videos sourced from YouTube, featuring over 500,000 images. The dataset also 
includes 8,000 manipulated videos generated using four state-of-the-art face manipula-
tion methods: Face2Face, FaceSwap, DeepFakes and NeuralTextures. These methods 
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encompass both face-swapping and facial reenactment techniques, enabling a compre-
hensive evaluation of the model’s performance across the most prevalent types of video 
manipulations. To reflect real-world conditions, the manipulated videos are provided in 
two quality levels – HQ and LQ – achieved through H.264 compression with quantization 
parameters of 23 and 40, respectively. The diversity in manipulation techniques and com-
pression levels in FF +  + allows for a thorough assessment of the model’s ability to detect 
facial forgeries under varying conditions, further testing its generalizability and robustness.

3.2 � Preprocessing

The preprocessing of the raw video data into a format suitable for DL analysis is a critical 
step in the proposed methodology. This process involves several key stages, each designed 
to systematically transform raw videos into sequences of 3DMM vectors, which serve as 
input for the DL network. The first step in our preprocessing pipeline is frame extraction, 
where each video is systematically segmented into individual frames. This involves parsing 
the video file to extract still images at a consistent frame rate, ensuring that each moment 
captured in the video is available for further analysis. Frame extraction is crucial as it iso-
lates each visual instance for detailed examination in subsequent steps. Following frame 
extraction, the RetinaFace [41] face detector is employed. Renowned for its accuracy and 
efficiency, particularly in detecting faces with high precision under various conditions, Ret-
inaFace identifies and locates facial regions within the frames. Once detected, the faces are 
cropped and then undergo alignment to ensure that key facial features such as eyes, nose 
and mouth are positioned consistently across all images. This alignment step adjusts the 
orientation and scale of the faces, standardizing the input and improving the consistency of 
subsequent processing steps.

Subsequently, each isolated facial image undergoes a process to generate a 3DMM 
representation. 3DMMs [42] are generative models that utilize a set of low-dimensional 
parameters to create statistically meaningful representations of the input face. They employ 
advanced statistical techniques, including principal component analysis (PCA), to distill 
the inherent shape and texture variations of the face. These models have a profound capa-
bility to understand and represent the intricate variations in facial features, making them 
highly effective for transforming a 2D image into a detailed 3D representation. A neutral 
face without expressions serves as the basis for this transformation, with any new face 
being represented as a linear combination of shape and texture components. Specifically, 
the principal components obtained through PCA form the core basis of the 3DMM. These 
components allow for the synthesis of new instances by adjusting the coefficients/weights 
associated with each component, with each coefficient influencing specific facial variations 
such as the width of the nose or the intensity of skin pigmentation.

Given a new input – such as a 2D image of a face – the 3DMM is employed to recon-
struct the underlying 3D shape and texture. This is achieved by iteratively adjusting the 
weights of the principal components to best match the input image, thereby minimizing the 
discrepancy between the reconstructed model and the original data. Recent advancements 
in the extraction of 3DMMs have seen the development of sophisticated techniques such 
as FLAME [43], RingNet [44] and DECA [45], which further enhance the accuracy and 
fidelity of the models. In the present study, a fast and lightweight 3D dense face alignment 
approach, named 3DDFA_V2 [46], is implemented. This framework predicts a vector of 
62 coefficients for each input frame, comprising 40 parameters for the shape, 10 for the 
expression, and 12 for the rigid pose of the depicted face. Finally, these vectors are stacked 



40624	 Multimedia Tools and Applications (2025) 84:40617–40636

to form a sequential array of 3DMM vectors for all frames of the video, which serves as the 
input for subsequent DL analysis. This method enhances our model’s ability to capture and 
analyze facial dynamics accurately throughout the video sequence.

3.3 � Proposed approach

The proposed approach to video deepfake detection integrates a hybrid CNN-LSTM-Trans-
former model with 3D Morphable Models (3DMMs) to enhance both accuracy and effi-
ciency in identifying manipulated content. This methodology is inspired by the techniques 
outlined in the ID-Reveal [36] study, which has been previously discussed in the Related 
Works section. The ID-Reveal methodology provides a robust foundation for understand-
ing and addressing the challenges associated with video deepfake detection, particularly in 
terms of leveraging biometric data and temporal features for more accurate identification of 
manipulated videos. Also, by employing an identity verification strategy, where test videos 
are compared with a set of reference videos containing genuine footage of the individuals, 
authentic content can be discerned from manipulated content with high precision.

Building on this foundation, the present study has developed a more comprehensive 
detection system by integrating CNNs, LSTMs and Transformer networks, each contrib-
uting uniquely to the model’s effectiveness. CNNs [47] are highly effective at capturing 
spatial hierarchies and detailed features from input data, making them ideal for extracting 
fine-grained information from 3DMM vectors. On the other hand, LSTM networks [48] 
excel in modeling temporal dynamics, enabling the capture of short-term dependencies 
and variations across consecutive frames. This ability to understand temporal changes over 
time is essential for accurately assessing the evolution of features in video sequences. The 
integration of Transformer networks further enhances the model by addressing long-range 
dependencies and capturing complex sequential patterns. Transformers [49] represent a 
significant breakthrough in neural network architecture, perfectly suited for applications 
that require the analysis of complex sequential data [50]. Unlike traditional models that 
relied on recurrent or convolutional layers, Transformers leverage a fully attention-driven 
approach [51]. This architecture eliminates the need for recurrence, facilitating substantial 
improvements in parallel processing capabilities and, thus, enabling the efficient handling 
of large volumes of video data [52]. Key features of this architecture include multi-headed 
attention mechanisms, positional embeddings, residual connections, layer normalization 
and feedforward networks, all of which work in concert to capture global relationships 
between input and output elements without the sequential processing constraints of ear-
lier architectures. These advancements allow for enhanced processing of sequential tasks 
like video analysis, where each frame can influence the interpretation of every other frame 
in the sequence, thereby improving the detection and identification of subtle inconsisten-
cies indicative of deepfake manipulation. The proposed CNN-LSTM-Transformer model 
effectively combines local detail extraction, short-term temporal modeling, and long-term 
dependency analysis, providing a powerful framework for video deepfake detection. The 
architecture capitalizes on the strengths of each component: the CNN for spatial detail, the 
LSTM for short-term temporal consistency, and the Transformer for long-term temporal 
relationships.

The detailed model architecture is also presented in Fig.  1. Similar to approaches 
from other fields that deploy Transformer-based models, such as ViT, a tokenization 
process is employed to convert input data into sequences. This is achieved by the CNN 
component of the network, which includes a 1D convolutional layer with a kernel size 



40625Multimedia Tools and Applications (2025) 84:40617–40636	

of 4 and a stride factor of 4, followed by GroupNormalization and LeakyReLU activa-
tion. The sequence of tokens is then passed to an LSTM module, which captures short-
term temporal dynamics across consecutive frames, and the resultant output is then fed 
into a series of Transformer encoder layers. Each Transformer encoder layer consists 
of a multi-headed attention and a feedforward network, with each component followed 
by a LayerNormalization layer, as detailed in [49]. Finally, for each token within the 
sequence, the resulting features are linearly projected into a 128-dimensional vector, 
which represents the final output embedding, using a 1D convolutional layer with a ker-
nel size of 1 and a stride factor of 1.

For model training, the official training set of VoxCeleb2 dataset consisting of 5,994 
identities is used, while model validation is performed on the remaining 118 identities. 
During this process, a set of 8 random identities is selected and for each identity a total 
of 8 videos are chosen, resulting in a batch comprising 64 videos. From each video, 
a segment of 96 consecutive frames is sampled to ensure the continuity of the frames 
and maintain their sequential order. Similar to [36], a contrastive learning approach is 
deployed and each video of the batch the following loss function is calculated:

Fig. 1   The proposed approach: Raw video data (N frames) undergoes preprocessing through frame extrac-
tion, face detection, facial alignment and 3DMM vector generation. The resulting sequences are first pro-
cessed by a CNN, which extracts detailed spatial features from the 3DMM vectors that act as tokens. These 
features are then passed to an LSTM module, which captures short-term temporal dynamics across consec-
utive frames. The output from the LSTM is subsequently fed into a Transformer network, where six Trans-
former encoder layers capture long-range dependencies within the video sequence. Finally, the encoded fea-
tures are projected into a 128-dimensional space for each token, using a linear transformation, to produce 
the final output embedding
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where N is the total number of segments, sim + is the similarity of positive pairs – pairs of 
segments depicting the same identity –, and sim- is the similarity of negative pairs – pairs 
of segments depicting different identities – given a pivot segment i within the current batch. 
The similarity function is calculated using the squared Euclidean distance as follows:

where i and j represent two segments, t and t’ are the individual frames of the two seg-
ments, respectively, and y is the output embedding representing the encoded information 
extracted from the segments. This objective function encourages the network to learn simi-
lar representations for segments of the same identity and dissimilar representations for seg-
ments of different identities. The network is optimized using the Adam optimizer, config-
ured with an initial learning rate of 10–5, which is gradually reduced by a cosine learning 
rate scheduler [53], and a weight decay of 10–4.

During model testing, to determine the authenticity of a video representing a specific 
identity, the following steps are taken: Initially, a set of pristine videos depicting the iden-
tity is required. These videos undergo processing by the proposed network, resulting in a 
sequence of embeddings. Subsequently, the video in question is inputted into the network, 
generating its own series of embeddings. By measuring the Euclidean distance between 
these embeddings and the reference embeddings, one can ascertain the legitimacy of the 
test video.

Specific enhancements have been implemented to refine the ID-Reveal principles in the 
present study, focusing on optimizing model performance and ensuring scalability across 
diverse datasets and real-world scenarios. These enhancements include more effective 
training procedures and the integration of an efficient CNN-LSTM-Transformer model 
that can better capture and analyze the temporal dynamics of facial expressions in vid-
eos. Another important remark is that the proposed approach diverges significantly from 
ID-Reveal by eschewing the use of GANs to generate manipulated content during train-
ing. Instead, we train our model exclusively on pristine, unmanipulated data. This strategic 
decision prevents the model from learning to detect only the particular characteristics of 
GAN-manipulated faces, which might not be representative of all possible manipulations. 
In this way, the generalization ability of the proposed model is enhanced, enabling it to 
more effectively identify and adapt to new, previously unseen types of manipulations. By 
not confining the training to the characteristics of GAN-generated deepfakes, our model 
is better equipped to handle a broader spectrum of deepfake technologies and techniques 
that might emerge, which is crucial for maintaining high detection accuracy in a landscape 
where manipulation methods are continually evolving and becoming more sophisticated.

4 � Results and discussion

The development and testing of the DL model for video deepfake detection were conducted 
within a Python 3.9 environment, utilizing the PyTorch library (version 2.0.1) as the pri-
mary tool for DL model implementation. All computational experiments were performed 
on a workstation equipped with a NVIDIA GeForce RTX 3090 GPU, supported by CUDA 
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version 11.8, which provided the necessary computational power to handle intensive train-
ing and testing processes. The choice of PyTorch was motivated by its flexibility and effi-
ciency in handling tensor computations and its dynamic computational graph that facili-
tates rapid testing and iteration of different model architectures.

The proposed model underwent extensive training to identify the optimal balance 
between performance and computational efficiency. Training and validation were system-
atically conducted using separate subsets of the VoxCeleb2 dataset, with training occurring 
on the designated training set and evaluations on the validation set. This approach helps to 
prevent overfitting and ensures that the model’s generalizability is accurately assessed. Ini-
tial tests aimed at ascertaining the point of diminishing returns for performance gains cov-
ered a range from 100 to 1,000 epochs. Figure 2 presents the area under the curve (AUC) 
measurements during training both on the training and validation sets at various epoch 
intervals.

The data in Fig.  2 shows that the model’s performance generally improved as the 
number of training epochs increased, with a notable plateau in improvement beyond 500 
epochs. The highest AUC reached was 90.82% at 1,000 epochs, after which we observed 
that further increases in epochs did not result in substantial gains in performance. This 
finding indicated a convergence point at 1,000 epochs, leading to the decision to standard-
ize training at this duration for the final model. This decision was informed by the dimin-
ishing returns on further training and the need to balance computational resources with 
practical deployment considerations. Following the assessment of training duration, we 
conducted experiments to evaluate how variations in the number of Transformer encoder 
layers affect the model’s performance, in particular measured by the AUC on the validation 
set. These findings are summarized in Table 1.

Fig. 2   Model performance (AUC) on the training and validation sets across different training epochs

Table 1   Model performance (AUC) on the validation set relative to the number of Transformer encoder 
layers

Layers 1 2 4 6 8

AUC​ 88.58% 89.99% 90.64% 90.82% 90.88%
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The results show a noticeable improvement in AUC as the number of layers increases from 
1 to 6, suggesting that deeper models capture more complex patterns essential for accurate 
video deepfake detection. However, beyond six layers, the increases in AUC become marginal. 
Specifically, the AUC improvement from 6 to 8 layers was only 0.06%, a slight increment con-
sidering the additional complexity and computational overhead associated with larger models. 
Based on these results, we decided to adopt the 6-layer Transformer module for our system. 
This decision balances performance with computational efficiency, ensuring substantial detec-
tion capabilities without undue resource demands, suitable for practical deployment scenarios 
where both accuracy and processing speed are critical. Following the assessment of the num-
ber of Transformer encoder layers, we conducted an ablation study to investigate the impact of 
varying the number of LSTM layers on the model’s performance, particularly measured by the 
AUC on the validation set. The results of this study are summarized in Table 2.

The results in Table 2 indicate that the model’s performance, measured by the AUC, is 
highest with 1 LSTM layer (90.82%), with a very slight decrease when using 2 LSTM layers 
(90.80%). However, further increasing the number of LSTM layers to 4 or 6 leads to a notice-
able decline in performance, with the AUC dropping to 90.20% and 87.53%, respectively. This 
suggests that while a minimal number of LSTM layers can effectively capture the temporal 
dependencies needed for accurate deepfake detection, adding more layers introduces unneces-
sary complexity, leading to overfitting and a subsequent reduction in performance. Based on 
these findings, we opted to use a single LSTM layer in our final model configuration. This 
choice ensures optimal performance while maintaining computational efficiency, aligning 
with our goal of developing a robust and practical deepfake detection method suitable for real-
world applications.

After validating the proposed model’s performance on the VoxCeleb2 validation set, fur-
ther evaluations were conducted on the additional external testing datasets, DFD, Celeb-DF 
and FF +  + , to assess its effectiveness in more diverse and challenging environments. These 
datasets were tested under both HQ and LQ conditions to better simulate the range of real-
world scenarios the model might encounter. In addition to assessing the model’s standalone 
performance, we conducted a comparative analysis to further validate its effectiveness by com-
paring its results against other well-regarded models in the field. This comparison involves a 
variety of detection approaches that were also reviewed in the ID-Reveal study, encompass-
ing frame-based methods like MesoNet [54], Xception [55], EfficientB7 [56] and FFD [57], 
ensemble methods such as ISPL [58] and the solution of the DFDC winner, Selim Seferbekov, 
temporal-based methods including Eff.B1 + LSTM and ResNet + LSTM [12], as well as iden-
tity-based approaches like A&B [14], ID-Reveal and our own model. For detailed descriptions 
of these methods, the reader is referred to the supplemental document provided by the ID-
Reveal study [36]. Additionally, for a more comprehensive comparison, we also evaluated two 
other models: a CNN-LSTM and a CNN-Transformer model.

To ensure a fair and comprehensive evaluation, all supervised models – spanning 
frame-based, ensemble and temporal approaches – were trained on specific datasets tai-
lored to the testing scenarios, as described in [36]. For the DFD dataset, these models 
were trained on the DFDC dataset, which comprises approximately 100,000 fake and 

Table 2   Model performance (AUC) on the validation set relative to the number of LSTM layers

Layers 1 2 4 6

AUC​ 90.82% 90.80% 90.20% 87.53%
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20,000 real videos. For the Celeb-DF dataset, the training utilized the FF +  + [29] data-
set. This approach ensures that each model is challenged with data that mirror the con-
ditions and manipulations they are expected to detect.

Conversely, identity-based methods, including A&B, ID-Reveal and our proposal, 
were consistently trained on the VoxCeleb2 dataset for both testing scenarios. This con-
sistent training strategy helps to focus on biometric and behavioral consistencies rather 
than specific forgery signatures, enhancing their capability to generalize across different 
forms of manipulations. For testing on the FF +  + dataset, it is important to note that the 
dataset does not provide multiple videos of the same subject. Therefore, for identity-
based approaches, we adopted a similar approach to the ID-Reveal study by using only 
videos of at least 14 s in duration. The first 6 s of each pristine video were used as the 
reference dataset, while the last 6 s were used for performance evaluation. Testing was 
conducted on the DFD, Celeb-DF and FF +  + datasets under both HQ and LQ video 
conditions, providing a comprehensive assessment of model performance across various 
data sources and manipulation techniques.

As depicted in Table 3, the proposed CNN-LSTM-Transformer model achieves supe-
rior performance outperforming all other models listed in almost all cases. Notably, our 
model demonstrates an AUC of 97% for both HQ and LQ conditions in the DFD data-
set, and an AUC of 86% and 83% for HQ and LQ conditions in the Celeb-DF dataset, 
respectively. The FF +  + dataset further underscores the superior performance of our 
model, with AUCs of 98% and 97% for HQ and LQ conditions in face swapping vid-
eos, and 99% and 98% in facial reenactment videos. These results highlight a dramatic 
improvement over existing approaches, whose AUCs are significantly lower. These 
results confirm the robustness and reliability of the CNN-LSTM-Transformer model 
against various forms of video manipulation, standing out particularly in environments 
where video quality may be degraded – a common challenge in real-world applications.

Table 3   Performance comparison (AUC) between the proposed model and other relevant studies

       Dataset
Method

DFD Celeb-DF FF +  + 

FS FR

HQ LQ HQ LQ HQ LQ HQ LQ

MesoNet 57% 53% 75% 67% 61% 62% 58% 57%
Xception 93% 63% 88% 58% 89% 79% 58% 57%
Efficient-B7 97% 64% 80% 56% 93% 80% 59% 54%
FFD 83% 69% 76% 59% 75% 70% 56% 56%
ISPL 93% 72% 83% 61% 83% 76% 59% 55%
Seferbekov 98% 67% 86% 62% 97% 87% 62% 55%
ResNet + LSTM 65% 64% 72% 60% 63% 66% 58% 58%
Eff.B1 + LSTM 95% 76% 84% 58% 90% 78% 62% 58%
A&B 77% 61% 56% 55% 97% 65% 79% 53%
ID-Reveal 96% 94% 84% 80% 99% 97% 87% 83%
CNN-LSTM (Ours) 93% 93% 81% 78% 97% 96% 99% 98%
CNN-Transformer (Ours) 97% 97% 86% 82% 97% 97% 99% 97%
CNN-LSTM-Transformer (Ours) 97% 97% 86% 83% 98% 97% 99% 98%
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The superior performance of the proposed model is significantly attributed to its train-
ing on an exclusively pristine dataset. This approach prevents the model from overfitting to 
specific artifacts of deepfake generation methods, which are often present in datasets con-
taining manipulated media. By understanding the subtleties of genuine human expressions 
and interactions captured in unaltered videos, the model forms a more accurate baseline for 
identifying discrepancies. Consequently, this training strategy enhances the model’s gener-
alizability across unknown manipulations, where typical deepfake detection models might 
fail.

Furthermore, the integration of the CNN-LSTM-Transformer architecture signifi-
cantly advances our approach beyond the CNN-based methodologies used in models like 
ID-Reveal, which employs a ResNet format. In our model, the CNN component initially 
extracts detailed spatial features from the input data, capturing fine-grained local details 
essential for identifying manipulations. The LSTM module then processes these features 
to model short-term temporal dynamics across consecutive frames, addressing the evolu-
tion of features over time. Finally, the Transformer network analyzes the entire sequence 
globally, capturing long-range dependencies and complex patterns that may span across 
the entire video. This combined approach allows our model to integrate both spatial and 
temporal information more comprehensively. By processing sequences in this integrated 
manner, our model excels in identifying subtle manipulative discrepancies that may not be 
consistently apparent across frames, offering enhanced performance in both HQ and LQ 
video content.

This comparative analysis not only establishes the efficacy of the proposed model in 
detecting deepfake videos but also illustrates its potential to be a leading solution in the 
fight against digital video manipulations. The performance advantage in LQ video condi-
tions is especially significant, highlighting the model’s advanced capability to handle the 
kind of noisy, compressed and less-than-ideal video data that is often encountered in prac-
tical scenarios.

The efficiency of the proposed model during inference is another critical aspect of its 
real-world applicability, particularly when considering deployment in environments where 
processing speed is crucial. To demonstrate the advancements our model offers in terms of 
inference speed, we conducted a comparative analysis with the ID-Reveal study across var-
ious operational metrics. This analysis was performed on the same workstation equipped 
with a NVIDIA GeForce RTX 3090 GPU and supported by CUDA version 11.8, as previ-
ously described at the beginning of this section, ensuring fairness and consistency in our 
comparative evaluation.

The results of this analysis are summarized in Table 4, which shows the time taken for 
different subtasks during the final stages of inference on the testing datasets. It’s impor-
tant to note that these times reflect the model’s processing after initial preprocessing steps 
such as frame extraction, face detection and 3DMM extraction have been completed. These 
tasks involve: (i) DFD ref inf, the time required to process the DFD videos used as the 
reference set, (ii) DFD test inf, the time to process the DFD videos used as the test set, (iii) 
DFD dist_calculation_ref, the time to compute the distances between the encoded repre-
sentations of the DFD reference set of videos, (iv) DFD dist_calculation_test, the time 
to calculate the distances between the encoded representations of the DFD test set of vid-
eos, (v) celebDF ref inf, the processing time for the Celeb-DF reference set of videos, (vi) 
celebDF test inf, the processing time for the Celeb-DF test set of videos, (vii) celebDF 
dist_calculation_ref, the time needed to compute the distances between the encoded rep-
resentations of the Celeb-DF reference set of videos, (viii) celebDF_dist_calculation_test, 
the time required to calculate the distances between the encoded representations of the 
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Celeb-DF test set of videos, (ix) FF +  + FS ref inf, the processing time for the FF +  + face 
swapping videos used as the reference set, (x) FF +  + FS test inf, the processing time for 
the FF +  + face swapping videos used as the test set, (xi) FF +  + FS dist_calculation_ref, 
the time to compute the distances between the encoded representations of the FF +  + face 
swapping reference set of videos, (xii) FF +  + FS dist_calculation_test, the time to calcu-
late the distances between the encoded representations of the FF +  + face swapping test 
set of videos, (xiii) FF +  + FR ref inf, the processing time for the FF +  + facial reenact-
ment videos used as the reference set, (xiv) FF +  + FR test inf, the processing time for the 
FF +  + facial reenactment videos used as the test set, (xv) FF +  + FR dist_calculation_ref, 
the time to compute the distances between the encoded representations of the FF +  + facial 
reenactment reference set of videos, and (xvi) FF +  + FR dist_calculation_test, the time to 
calculate the distances between the encoded representations of the FF +  + facial reenact-
ment test set of videos.

These results demonstrate a significant reduction in inference time across all metrics 
when compared to the ID-Reveal model. Notably, the proposed model reduces the infer-
ence time dramatically for all three testing datasets, with the largest time savings observed 
in the inference for the test videos of the DFD dataset, where the proposed model com-
pletes the task in just 10 s compared to 3 min and 29 s for the ID-Reveal model. The sub-
stantial decrease in time required for distance calculations, which is particularly attributed 
to the advanced architecture of the CNN-LSTM-Transformer model, where each compo-
nent contributes to faster processing., further highlights the efficiency of our approach, 
especially in real-time or near-real-time applications where rapid processing is essential. 
These improvements not only enhance the usability of our model in practical settings but 
also ensure that it can be deployed effectively in systems requiring high throughput and 
minimal latency.

Overall, the achievements of the present study are the following: (i) the integra-
tion of 3DMMs with CNNs, LSTMs and Transformer networks represents a significant 

Table 4   Inference time 
comparison between ID-Reveal 
and the proposed model

Subtask Time

ID-Reveal Ours

DFD ref inf (363vids) 38 s 4 s
DFD test inf (3068vids) 3 min 29 s 11 s
DFD dist_calculation_ref 16 s 1 s
DFD dist_calculation_test 1 min 33 s 9 s
celebDF ref inf (590vids) 15 s 2 s
celebDF test inf (5639vids) 2 min 11 s 18 s
celebDF dist_calculation_ref 1 s 0 s (< 1 s)
celebDF_dist_calculation_test 8 s 2 s
FF +  + FS ref inf (694vids) 14 s 4 s
FF +  + FS test inf (687vids) 13 s 4 s
FF +  + FS dist_calculation_ref 0 s (< 1 s) 0 s (< 1 s)
FF +  + _FS dist_calculation_test 0 s (< 1 s) 0 s (< 1 s)
FF +  + FR ref inf (694vids) 13 s 4 s
FF +  + FR test inf (687vids) 12 s 4 s
FF +  + FR dist_calculation_ref 0 s (< 1 s) 0 s (< 1 s)
FF +  + _FR dist_calculation_test 0 s (< 1 s) 0 s (< 1 s)
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advancement in the field of deepfake detection offering a powerful tool for identifying sub-
tle deepfake indicators, (ii) the proposed model addresses one of the critical barriers in 
deepfake detection – high computational demands – by combining efficient operation with 
advanced processing capabilities, (iii) the model demonstrates strong performance across 
different video qualities, compression levels and manipulation types., ensuring its utility 
in real-world applications where such conditions are variable and unpredictable, (iv) by 
training exclusively on unmanipulated data, the model avoids the pitfalls of overfitting to 
specific deepfake artifacts and remains adaptable to new and evolving deepfake techniques, 
enhancing its long-term applicability, and (v) the proposed model effectively manages tem-
poral dynamics, providing robust and accurate detection across sequences, which is crucial 
for capturing subtle manipulations in video content.

On the other hand, the limitations of the present study could be summarized into three 
parts. Firstly, while our extensive testing confirms the model’s effectiveness on multi-
ple datasets, its generalizability to additional datasets or unseen manipulation techniques 
beyond those covered in this study remains an area for future exploration. Secondly, 
although the model is designed to adapt to new manipulation techniques, the rapidly evolv-
ing nature of deepfake technology may eventually require further adaptations or updates 
to maintain its effectiveness. Thirdly, we exclusively used Euclidean distance for identity 
verification due to its simplicity and effectiveness in related studies [36, 37], but alternative 
distance metrics could potentially offer additional insights that were not explored in this 
work.

To address these limitations and build on the current achievements, future work could 
explore the incorporation of more diverse datasets during training to enhance generaliz-
ability. In this regard, we have identified a critical gap in the availability of open-access 
datasets that include both manipulated and pristine videos of the same identities – data-
sets essential for applying identity verification approaches like ours. To overcome this 
limitation, we plan to create an extended deepfake dataset that supports both traditional 
supervised deepfake detection models and identity verification models. This dataset will be 
designed to include a wide range of manipulation techniques and pristine videos, facilitat-
ing the development of more robust and generalizable deepfake detection methods.

Additionally, we plan to adjust our model design to accommodate alternative distance 
metrics, such as cosine similarity and density-based probability, to further refine and 
enhance its performance. Finally, although this study focuses exclusively on video data due 
to the inconsistent availability of audio and the absence of textual information in the data-
sets used, future research will explore integrating multimodal data, such as audio and text, 
wherever available. Such an approach will aim to provide a more comprehensive deepfake 
detection framework. Continuous monitoring of emerging deepfake technologies and peri-
odic model updates will also be essential to keep pace with the advancing manipulation 
techniques.

5 � Conclusions

In this study, we introduced a novel and comprehensive integration of 3DMMs, CNNs, 
LSTMs and Transformer networks to enhance both the accuracy and efficiency of video 
deepfake detection. This approach leverages the strengths of 3DMMs in capturing intri-
cate facial geometries, the spatial analysis capabilities of CNNs, the short-term temporal 
dynamics of LSTMs, and the long-term dependencies management of Transformers. To 
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the best of our knowledge, this is the first study to combine these advanced technologies for 
detecting manipulated videos, setting a new benchmark in the field. The proposed model 
excels in environments with varied video qualities, compression levels and manipulation 
types, maintaining high performance under challenging conditions. Its efficiency is under-
scored by rapid processing speeds that facilitate optimized deepfake detection capabilities 
– a significant improvement over existing methods, as detailed in our comparative analysis. 
Additionally, by training exclusively on pristine, unmanipulated data, the model avoids the 
common pitfalls of overfitting and remains effective against evolving, sophisticated manip-
ulation techniques. This approach not only advances the technological framework for deep-
fake detection but also enhances the practical applicability of these systems in critical areas 
such as digital forensics and content authentication.
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