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Abstract—Waste from electrical and electronic equipment is 
exacerbating the global environmental crisis. There is an urgent 
need to build a robust infrastructure capable of providing 
effective e-waste disposal options. In this work, a novel hybrid 
human-robot and system-agnostic application for relevant waste 
disassembly and recycling has been developed. Working on cells, 
collaborative robots, enhanced with state-of-the-art computer 
vision capabilities, can achieve near-real-time performance and 
high precision in the disassembly process. Additionally, a new 
screw dataset suitable for three separate computer vision tasks, 
namely instance segmentation, object detection, and semantic 
segmentation, is introduced to facilitate future research, which 
can be utilized almost for any screwing/unscrewing application 
beyond the current disassembly topic. Experiments demonstrat-  
ing the robustness of the visual object detection and robotic 3D 
deprojection modules, which are the core aspects of the proposed 
architecture, have been conducted.  

Index Terms—WEEE recycling, Robotic disassembly, Screw 
dataset, Robotic vision, Object recognition, Perception systems, 
Scene analysis

 

 

I.
 
INTRODUCTION

 

 
Waste  from Electrical and Electronic Equipment (WEEE)  

is now one of the world’s fastest-growing waste streams, with 

experts forecasting that it will continue to grow at a pace        

of 3 to 5% each year [1]. The technical advancements in 

robotics, industry 4.0, artificial intelligence (AI), and the
 
needs 

of factories of the future push robots and humans into close 

collaboration, with the ultimate goal of increasing industrial 

productivity and flexibility. Robotic-based WEEE
 
disassembly 

systems should replace the current hazardous, heavy, and time-
 

consuming processes carried out mostly by human workers. 

This change reduces the health and safety concerns for human 

employees posed by potentially hazardous waste items, often 

handled in plants, and allows workers to focus
 
on higher-

 

skilled, higher-quality, and less intensive tasks.
 
To enable

 

efficient human-robot collaboration [2], such collaborative 

robots (cobots) perception system should be enhanced with 

computer vision (CV) capabilities based on deep learning 

(DL), transforming them into active and effective co-workers. 

Very few studies, for instance [3], [4] investigated the use  

of cobots for disassembly systems without any CV method 

and based their perception only on approximate positions and 

spiral search of the element of interest. Gil et al. [5] designed 

a multi-sensorial robotic system to perform disassembly on 

electronic equipment by identifying covers, wires, batteries, 

screws, etc. At the detection phase, the later employed a 

variety of classic CV algorithms such as adaptive thresh- 

olding, Douglas–Peucker’s algorithm for polygonal approach, 

Progressive probabilistic hough transform, template matching 

and edge detection with Canny’s detector. 

DiFilippo et al. [6] designed a system that combines CV and 

force-sensing technology. Using a Hough Circle Transform, 

the overhead camera detected circles as screw candidates  

once a laptop was put on the workspace. Using another 

camera mounted on the robot’s end-effector, the robot would 

then move to the positions of these circles and apply CV 

methods to center the screws. This operation took some time 

to perform. Bdwidi et al. [7] also developed a workstation for 

disassembling electric vehicle motors automatically. To detect 

screws, they used a sensor that could provide depth data, a 

feature point detector like the Harris detector, and various 

optimization phases. These classifiers have the problem of 

being very sensitive to lighting conditions and producing a 

large number of false positives. 

The
 
goal

 
of

 
this

 
work

 
is

 
to

 
introduce

 
a
 
novel

 
framework

 
able 

to support the challenging task of human-robot disassembly  

of electronic devices. More specifically, the paper introduces 

the following innovative features: a) a novel
 
system-agnostic
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architecture design for the WEEE  disassembling  sys-  

tem based on cutting-edge components and the most up-to- 

date software development tools and libraries, where system- 

agnostic refers to the ability to combine different DL ar- 

chitectures for the visual  object  detection  module  as  well  

as its generalisation to different application domains beyond 

WEEE disassembly b) traditional CV techniques used for the 

perception system of robots are replaced with a deep learning- 

assisted computer vision method, providing an approach 

more generalizable, more accurate, and faster than traditional 

techniques. The method utilized in our system, in particular, 

operates at 7 FPS on a single GPU, making it a real-time 

application, and c) to address the challenging task of screw 

detection, which, according to the above studies, lies at the 

core of the disassembly process, a new large-scale screw 

dataset is introduced. The proposed screw dataset contains 

945 images and over 4, 000 annotated screw instances suitable 

for three separate computer vision tasks, namely instance seg- 

mentation, object detection, and semantic segmentation. The 

formed dataset can improve detection accuracy of particularly 

small objects and it is applicable to any screwing/unscrewing 

tasks beyond WEEE disassembly. 

The rest of the paper is organised as follows: the proposed 

system architecture is presented in Section II. Section III 

introduces the new screw dataset. The disassembly visual 

object detector along with experimental results are presented 

in Section IV, 2D to 3D deprojection scheme and evaluation  

is being addressed in Section V and the paper is concluded in 

Section VI. 

the camera system and X,Z the unknown transformations 

matrices, the formula of the hand-eye calibration problem is 

AX=ZB. In this work, the aforementioned method is system- 

agnostic, completely automated and embedded in the system’s 

deployment procedure. This is a preparatory step that occurs 

only at the system’s initialization phase. Last but not least, an 

Aruco [8] marker, attached to the robot’s end-effector is used 

as a calibration object. 

Vision Isolation: The AI vision system of the disassembly 

step is completely isolated and dockerized, communicating 

with the rest components of the system through a client-server 

scheme that is based on the ZeroMQ library [9]. RGB frames 

are efficiently stored in the shared memory - /dev/shm, 

giving access to the dockerized object detector to further 

process them. 

II. SYSTEM ARCHITECTURE 

Pivotal to the design of our approach is the observation that 

the visual object detection and the robotic 3D deprojection 

modules are two standalone systems that have shareable and 

co-occurring features. The main objective of our application  

is to assemble the component sub-systems of the disassembly- 

related task and to ensure that the sub-systems can efficiently, 

functionally and physically be integrated into a complete 

recycling plant solution (working cell). The purpose of the 

system is to associate the information derived from the visual 

object detection module with the manipulation processes of the 

robot. Figure 1 illustrates the overall system’s architecture. 

World  Definition: Our ambition is the system to be used  

by articulated-stable cobots. In this case, it is necessary to 

define a working area frame (world coordinate frame). Its 

purpose is to localize the robot in the world and to use it        

as a reference for the relationship  between  the  sensor  and 

the actuation frame. To this end, as a preliminary step, the so-

called hand-eye calibration problem has to be resolved. This 

procedure determines and computes a circle of spatial 

transformations-relationships between a robot and one or more 

sensors. The outcome is all the transformations needed to 

estimate the association between the Intel RealSense RGB-   

D camera sensor and the robot end-effector as well as the 

transformation from the world coordinate frame to the robot 

base. Assuming that A is the robot end-effector system, B 

 

 

 

 
Fig. 1. System Architecture: A Intel RealSense RGB-D sensor feeds the 
system with RGB-D frames and camera parameters. The dockerized AI 
Visual object detection is responsible for the 2D detection task, while the 3D 
projection module is in charge of forming the robot’s operation area (world 
frame), filtering the detected components from the whole scene and projecting 
them into the 3D space with respect to the World’s-Robot’s frame. 

 

Scene understanding: A scene may be succinctly char- 

acterized as a composition of scenes of objects and their 

relations. Object detection is a technology, usually based on 

computer vision, machine learning and image  processing,  

that detects and identifies instances of  semantic  objects  in 

2D images. Consequently, object detection can separate and 

classify objects from a 2D scene. However, point cloud data is 

needed for the environment perception of robots. Point clouds 

of a scene can be generated using RGB and depth information 

captured by RGB-D sensors. Therefore, there is a need to 

align the RGB and Depth data produced by those sensors in 

order to produce high-quality point clouds. To this end, Intel’s 

RealSense SDK [10] that provides multiple RGB and Depth 

alignment techniques has been used. 

Point cloud processing: The Point Cloud Library [11] (PCL) 

has been used to process the point clouds produced by Intel’s 

RealSense RGB-D camera. To avoid broadband issues and 

failures, the point cloud is filtered so that only specific com- 
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ponents of high interest of the scene are transmitted through 

ROS [12]. More specifically, the point cloud is being cropped 

based on the bounding boxes and segmentation masks that 

have been extracted from the vision system. 

Reference frame and 3D deprojection: The relationships 

between the camera and the robot’s base are being calculated 

using the information derived from the Aruco marker and the 

hand-eye calibration procedure. At this stage, the ROS TF 

package, which is adequate to keep track of multiple coordi- 

nate frames over time, is utilized. Additionally, at the same  

time, the robot’s base is matched and composes the center of 

the system’s world. Next, the 3D coordinates of detections  

are represented in the camera-centered coordinate system. 

Using the bounding box information derived from the vision 

system, the center pixel of the bounding box is calculated. A 

normal vector is extracted at this point alongside the grasping 

points. Then, using the camera parameters (intrinsics) the 3D 

coordinates of the detections are transformed and de-projected 

to the robot coordinate system. 

 
III. SCREW DATASET 

DL-based computer vision methods rely heavily on the 

quantity and quality of labeled data. Our system was tested on 

a dataset of common WEEE devices (PC Towers, Microwave 

Ovens, Flat Panel Displays and Emergency lamps) and their 

components (cables, screws, printed circuit boards (PCB), 

capacitors, batteries, motors, etc.), which will be called the 

Four WEEE devices dataset. Moreover, in this work, a new 

screw dataset is introduced (Figure 2), as  the  unscrewing  

task is the first and one of the most challenging steps in the 

disassembly procedure. 

 

 
 

Fig. 3. Screw annotations for Semantic Segmentation, Object Detection and 
Instance Segmentation respectively. 

 

A. Dataset Collection and Statistics 

The introduced screw dataset1 comprises a wide variety of 

device types, including damaged and deformable devices, as 

would be expected in a realistic disassembly scenario. Data 

were recorded under various lighting conditions, rotations, 

and device movements were employed. Recordings were made 

using a multi-camera configuration to obtain more informative 

views. Images captured from a close distance with a camera 

mounted on a screwdriver and a hand-held camera from 

various angles. Additionally, images from a greater distance 

were captured using cameras in fixed positions at a maximum 

distance of 90 cm. 

TABLE I 

SCREW DATASET’S STATISTICS. 
 

Images Resolution Total Screw instances Average screws per image 

945 1280x720 4,414 4.7 

 
 

 

Fig. 2. Screw examples for different WEEE devices. 

 
One of the first attemps to form a large scale screw 

classification datasets is found in the work of Yildiz et al. [13] 

where a set of 10, 000 images of screws as positive samples as 

well as non-screw artifacts have been collected, the images had 

a resolution of 150x150 pixels and only one screw instance  

per image. Brogan et al. [14] presented an object detection 

dataset of 1, 170 close range images with electral devices in 

good condition, 2, 189 screw instances, and an average of 1.87 

screw instances per image. 

The screw dataset consists of 945 high definition 1280x720 

images, 4, 414 screw instances and 4.7 screws per image as 

shown in Table I. Blur estimation was employed to exclude 

blurry frames from the annotation process. The dataset in- 

cludes annotated data in COCO [15] format for three dif- 

ferent computer vision tasks: instance segmentation, object 

recognition, and semantic segmentation as shown in Figure 

3. From these images, 52.7% were recorded in a laboratory 

environment and 47.3% recorded in WEEE recycling plants. 

In the training, validation, and test sets, there are 765, 90 and 

90 fully annotated frames, respectively. 
 

IV. DISASSEMBLY VISION DETECTOR 

The Deep Learning era has significantly improved the 

majority of Computer Vision domains. In the case of object 

detection, replacing the original handcrafted feature extraction 

method with deep data-driven architectures has shown great 

potential and produced impressive results. In scenarios where 

there is a lot of overlap between the disassembly components, 

recognizing them by their bounding boxes would result in a  

lot of ambiguity, hence instance segmentation is preferred. 

1https://vcl.iti.gr/dataset/weee-disassembly-screw-dataset/ 
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Mask R-CNN [16] was selected as the core architecture    

for this work because of its cutting-edge performance and 

efficiency. Mask R-CNN is composed of two distinct modules 

that are responsible for  region  proposing and  classification. 

A set of candidate regions of predefined shape and size, 

known as anchors, is uniformly created over the image in the 

first stage. The RPN then validates each anchor based on its 

likelihood of containing a ground truth object. The proposed 

regions are made up of the most reliable anchors in terms       

of objectivity, and they are  then  sent  to  the  second  stage 

for additional classification. Furthermore, the Mask R-CNN 

architecture, which uses the Feature Pyramid Network (FPN) 

[17] to create discrete feature maps for different object sizes, 

makes it an even more attractive method in scenarios when 

small object recognition is required. 

A. Implementation details 

For feature extraction, the ResNet-101 [18] backbone was 

combined with the FPN [17] neck. The input images were 

adjusted so that their largest dimension is 1024 pixels wide 

while maintaining their aspect ratio. Our training is carried out 

on a single NVIDIA RTX 2080TI GPU with 11GB of VRAM. 

The weights of the network were set up using a model that had 

been pre-trained on the MS COCO dataset. With a momentum 

of 0.9, the stochastic gradient descent optimizer was applied. 

The uniform distributed anchors were made with ratios of 0.5, 

1, and 2 and scales of [8, 16, 32, 64, 128] to target objects of 

varied sizes. The model was trained for 300 epochs, with an 

initial learning rate of 0.001 that declined by a factor of three 

at epoch 100 and 200. Finally, data augmentation was used    

to expand the amount of data by rotating it by 90, 180, and 

270 degrees as well as flipping it vertically and horizontally 

during training. 

B. Evaluation 

The visual object detection module has been tested for 

detection and recognition of all components (cables, screws, 

PCBs, capacitors, etc.) on the Four WEEE devices dataset,    

as well as for screw detection only, using the standard COCO 

mean Average Precision and Recall metrics. In the former case, 

due to the complicated nature of the problem, the detection 

performance is deemed satisfactory (Table II). In the latter 

TABLE II 

EXPERIMENT RESULTS ON THE FOUR WEEE DISASSEMBLY DATASET. 
 

WEEE Device AP0.50:0.95 AP0.50 AP0.75 APS AR0.50:0.95 ARS 
PC Tower 0,689 0,836 0,623 0,305 0,591 0,419 

Emergency Lamp 0,729 0,828 0,706 0,468 0,623 0,489 

Flat Panel Display 0,657 0,641 0,614 0,379 0,644 0,318 

Microwave Oven 0,513 0,609 0,435 0,457 0,445 0,391 

Average 0,647 0,729 0,595 0,402 0,576 0,404 

 
case, it is clear that training on the introduced screw dataset   

to detect screws achieves higher accuracy than training on the 

Four WEEE devices dataset (Table III), which makes sense 

given that the proposed dataset is a subset of the Four WEEE 

devices dataset that has been enhanced with extra annotated 

screw frames. 

TABLE III 

EXPERIMENT RESULTS ON THE INTRODUCED SCREW DATASET. 
 

Dataset AP0.50:0.95 AP0.50 AP0.75 APS AR0.50:0.95 ARS 

Four WEEE devices dataset 0.478 0.532 0.386 0.397 0.412 0.458 
Introduced Screw dataset 0.586 0.849 0.442 0.431 0.637 0.537 

 
A disassembly screw detector was implemented to address 

the difficult task of screw detection, which is at the heart       

of the disassembly process. This detector incorporates several 

techniques, including a) Region-proposal tuning, which is an 

approach aimed at establishing better anchors for tiny objects. 

b) Multiscales representation, which employs the FPN Module 

to integrate rich semantic information from high-level feature 

maps with detailed location information from low-level feature 

maps. c) Reducing the number of additional component classes 

for disassembly and training a screw-only model. 

V. DEPROJECTION AND EVALUATION 

This section describes the deprojection scheme correlating 

the images (2D) derived by the Intel RealSense to their 

associated 3D coordinate system and the relationship between 

those two systems. Also, an evaluation of our application and 

the deprojection approach is included. 

2D Coordinate system (Pixels): Each stream of digital 

images provided by a Intel RealSense sensor is made up of 

pixels rows [width] and columns [height] that are associated 

with the 2D coordinate space. The coordinate [0,0] refers to 

the most top left pixel of the image while the the positive x 

and y axis point to the right and down respectively. 

3D Coordinate system (Points): In Intel RealSense sensors, 

each image stream is related with the 3D coordinate space too. 

The coordinate [0,0,0] indicates the image center, while the 

positive x,y and z axis point to right, down and forward re- 

spectively. The relationship between the 2D and 3D coordinate 

system or pixels and points is specified by the camera intrinsic 

parameters. Intel RealSense SDK provides those parameters  

in the internal structure and that makes mapping operations 

achievable. More specifically, both mapping a point from 3D 

coordinate space to a pixel in 2D coordinate frame and the 

reverse operation are build-in functions of the Intel RealSense 

SDK. The first operation is called projection while the second 

one is the deprojection. 

A. Setup and Evaluation 

The purpose of this task is to evaluate the error derived from 

the transformations that occur when deprojecting the screw 

detections from 2D to 3D coordinate system and to estimate 

the accuracy of our system in the 3D space. 

Taking into account the size of the screws on the case of 

microwave oven, 7mm diameter screws with 4mm cross in the 

center have been printed. Grid paper has been used as a guide 

for measuring the distances between every point. Moreover, a 

hand meter and a ruler were used for confirmation purposes. 

Using the visual screw detector that presented in section 4, the 

center (Pixel 2D coordinates) of each screw has been found. 

Those points have been converted to 3D coordinates using  

the deproject function by utilizing the intrinsic parameters of 
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TABLE IV 

COMPARISON OF HAND MEASUREMENTS AND DEPROJECTED POINTS 

DISTANCES. 
 

 Point1 Point2 Point4 Point5 Point6 
Hand Measured Distance 

From Point3 
0.200 0.150 0.150 0.156 0.250 

Deprojected Distance From 

Point3 
0.200 0.149 0.148 0.157 0.247 

Difference - Deviaton 0.000 0.001 0.002 0.001 0.003 

 
 

the camera. Table IV exhibits the deviation between grid-hand 

measurements and the code-calculated distance after the 3D 

deprojection of six highlighted points in the scene, the average 

difference-deviation is less than 1.8 millimeters. 
 

 

Fig. 4. Left: 2D Printed screws. Right: PointStamped messages after Depro- 
jection in 3D space. 

For visualization purposes, PointStamped ROS messages 

have been created for each point using the aforementioned   

3D coordinates. ROS PointStamped messages have been used 

for visualization in ROS RVIZ. Figure 4 highlights the depro- 

jection accuracy of six screws from 2D coordinate space to 3D. 

VI. CONCLUSION 

In this work, a novel architecture is introduced for enabling 

efficient disassembly of WEEE devices and components in      

a system-agnostic manner. Apart from WEEE disassembly, 

this system-agnostic architecture can be used for any machine 

learning application, such as assembly, defect detection, safety 

inspection, medical imaging, and other similar emerging appli- 

cations and systems. Traditional CV techniques are replaced 

with a deep learning-assisted computer vision method, which 

provides a more generalizable, accurate, and faster approach 

than traditional techniques. To further boost research in the 

field, a large-scale screw dataset, significantly broader than 

most datasets in terms of annotated screws has been formed. 

The screw dataset is a significant contribution to the scientific 

community as well as the industry, and it can also be used   

for small object challenges. Finally, experimental results have 

been conducted demonstrating the effectiveness of the visual 

object detection and the robotic 3D deprojection modules. 

Future work includes the investigation of transferring the 

proposed solution in various robotic vision applications while 

increasing the cognitive capacity of cobots by employing 

advanced perception methodologies. 
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Madrid- Cuevas,  and  Manuel  Marı́n-Jiménez,   “Automatic  generation  
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