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Abstract. Gesture Recognition is attracting increasingly more atten-
tion over the years and has been adopted in main applications in the real
world and the Virtual one. New generation Virtual Reality (VR) head-
sets like the Meta Quest 2 support hand tracking very efficiently and are
challenging the research community for more breakthrough discoveries
in Hand Gesture Recognition. What has also been quietly improved re-
cently are the VR controllers, which have become wireless and also more
practical to use. However, when it comes to VR gesture datasets, and
especially controller gesture datasets there are limited data available.
Point-And-Click methods are widely accepted, which is why gestures are
being neglected, combined with the shortage of available datasets. To
address this gap we provide two datasets one with controller gestures
and one with hand gestures, capable of recording with either controller
or hand and even with both hands simultaneously. We created two VR
applications to record for controllers and hands the position and the ori-
entation and also each timestamp that we record data. Then we trained
off-the-shelf time series classifiers to test our data, export metrics, and
compare different subsets of our datasets between them. Hand gesture
recognition is far more complicated than controller gesture recognition
as we take almost thrice input and the difference is being analyzed and
discussed with findings and metrics. The datasets are available online
https://doi.org/10.5281/zenodo.8027807

Keywords: Hand Gestures · Controller Gestures · Virtual Reality · Ma-
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1 Introduction

A technology that supports highly accurate and effective Gesture Recognition
(GR) in Virtual Reality (VR) environments has been envisioned in many popular
sci-fi movies, from a long time ago. So many years after those movies, it is now
the time, that finally the technology has just begun to become mature enough
⋆ Centre for Research and Technology Hellas - Information Technologies Institute
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for those visions to become a reality. VR devices have rapidly evolved over the
last decade and massively increased their capabilities and potential. Improved
features, wireless equipment, better resolution, and lower market price are just
a few of the major upgrades. New research horizons have broadened the Artifi-
cial Intelligence field, unlocking possibilities that were abandoned before due to
the lack of methods and equipment. The recently released Meta’s Quest 21, is
the first standalone VR device, which supports bare hand tracking, wireless con-
trollers, and wireless head-mounted display (HMD). As of now, hand tracking has
been a milestone, that has not been conquered entirely. Machine learning models
were unable to handle big datasets with many features and for that reason, deep
learning methods were used to address the hand gesture recognition research
field. VR controllers have also experienced revolutionary changes, cabled HMDs
are outdated and are being replaced by wireless ones. What is common between
controllers and hands is the Human-Computer-Interaction, which is achieved
with Point and Click. This method is widely accepted by the users resulting in
gestures being neglected on many occasions even where they could be extremely
meaningful. We grounded on these flaws to contribute with two datasets to fill
some gaps in the bibliography and provide two solemn tools for researchers to
work with in future gesture recognition systems. Introducing gestures in a VR
application consists of disproportionate sizes in terms of usability and effort re-
quired and that, precisely, is the main reason for gestures to be neglected, in
combination with the shortage of available datasets, regarding controller and
hand gestures. Collecting a dataset is a high effort time-consuming task, with
large ambiguities even between samples of the same gesture class(Fig.1). How-
ever, without this effort, one can not train a machine-learning algorithm to iden-
tify dynamic movements as gestures. After all, gesture recognition whether with
controllers or bare hands ends up being a time series classification problem and
we will research whether the state-of-the-art time series classifiers with machine
learning can achieve high accuracy or deep learning methods are truly required.
Our contribution concerns the creation and publication of two completely dif-
ferent datasets, the former with controller gestures and the latter with hand
static and dynamic gestures, supporting both left or right controller and hand.
Additionally, we created a benchmark with off-the-shelf time-series algorithms
from Sktime [13, 14] and will showcase a large diversity of subsets and metrics.
We will discuss the findings and share some thoughts on future work, what else
we could try to get different results, and what conclusions we finally concluded.

1 meta.com/quest/products/quest-2
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Fig. 1. Subjects while recording controller and hand gestures with the Meta Quest 2.

2 Related Work

The literature should be divided into two parts, one for controller gestures and
one for hand gesture recognition. While the former seems more user-friendly, the
latter draws more attention due to its potential. To begin with, not so long ago
the standard way to record hand gestures in real time was either with a cam-
era[12] or a depth sensor[11]. There are also approaches to classifying gestures
outside VR[6] from video and image recordings[15, 16]. Rather similar research
interest has been shown by[8], focusing on user experience and what is preferable
either controllers or hands. A static Hand Gesture research work[20] using a pub-
licly open hand dataset with grayscale images of hand poses demonstrates high
accuracy in short-time recognition. Meanwhile, combining gestures with deep
learning[2, 5, 29] in real-time has recently been a trend [3, 9]. In this work[19] 10
static gestures can be recognized by using a camera as a tracking device. Gesture
classifiers have been researched in other fields, including neuroscience[21, 28] with
prosthetic devices like armbands and sensors to create a human-machine interac-
tion for higher gesture recognition[18, 26]. What should be mentioned here is that
having gestures with both controllers or hands is not common. Attention is being
drawn to one-handed gestures, especially with the right hand. A similar work[23]
demonstrates an application of one-handed dynamic gestures to perform tasks
in VR or even Augmented Reality (AR) and showcases why this kind of dataset
needs to exist and improve. Another recent work[1] with gestures using the same
equipment as us. In the aforementioned paper, a new game-based application
with gesture interaction was created and the users had to perform gestures to
proceed to the next stages of the game. Skeleton-based data[17] is being used to
analyze patterns and train new convolutional neural networks[10]. These data
have been widely used for action recognition[24] and extended to other research
areas like human-robot-collaboration[25]. Finally, datasets are rare to find and
differ vastly in gesture classes, design, and recording methods. One of the most
recent papers[4] extends the NVIDIA[7] dataset to provide a new dataset with
video recordings.
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3 Gap Analysis and Motivation

The existing literature provides valuable insights into gesture recognition, al-
though there are gaps that need to be addressed. We built upon existing work
while also contributing with some new perspectives. As of now, there is limited
availability in VR gesture datasets especially regarding controller gestures. To
the best of our knowledge, these datasets are unique regarding the open access
availability they provide, together with details on which hand was used. With
respect to other existing datasets, we introduced a diversity allowing the user
to draw a gesture with either hand or controller, concerning the user’s preferred
hand and we imported not only static gestures but also dynamic ones. Our
datasets take into consideration the case of both controllers or hands being used
simultaneously to draw a gesture. We are recording detailed information on hand
position and orientation through time, as one unified object but also as a union
of 24 joints with respect to the wrist. Our participants are relative to computer
science, the age variance is 25-40 years old and previous VR experience with
hand tracking is little to none. Our motivation arises from the fact that already
existing datasets are short in terms of information, mostly by ignoring some
details that could be meaningful and essential to others and are limited to one-
handed gestures and only with a specific hand. We take a novel approach that
combines all the aforementioned work, reinforcing the existing literature with a
VR controller dataset and publishing a VR hand dataset with respect to both
hands and the HMD. We argue that the aforementioned datasets provide unique
dynamic two-handed VR gestures and also natural hand and controller move-
ments. For the hand dataset, gestures are common actions resembling grabbing
or pushing with either hand, and for the controller dataset, gestures are eas-
ily memorable as they resemble symbols that are being used daily. Taking into
account the HMD relocation is crucial for VR applications as it is also pretty
elegant to have access to each recording. New subsets can be created with great
flexibility as one can choose to create subsets only from a specific hand or with
limited classes or even a combination of both. It should be mentioned that de-
spite having information on which controller or hand was used, the sampling
methods were completely anonymous and could not be matched to the subjects
participating in the experiment.

4 Applications

To record the two datasets we created two different applications one for recording
controller gestures and one for hand gestures. The controller recording applica-
tion is tracking both the controllers’ position and rotation and each recording
timestamp. It is built using the Steam VR SDK2. In Fig.2 there are examples of
gestures being recorded. The user can observe what he records from these white
spawning spheres. The hand gesture recording application is built on a different

2 store.steampowered.com/app/250820/SteamVR
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Fig. 2. Screenshots from the VR controller gesture recording application, showing how
gestures were recorded. On top are gestures drawn with the left controller and examples
with the right controller in the bottom row. All gestures could be drawn with either
controller.

principle. We used the Voice SDK3 deployed by meta so that the user activates
the recording with his speech. There was a hand resembling figure on the left of
the user’s VR view which was performing on repeat the gesture the user should
draw, as presented in Fig.3 and Fig.4. The user could start the process by saying
a predefined word, then he would get optical feedback and an indication that
recording is active. While in recording mode, the user performs one gesture and
says a second predefined word to stop the recording and save the gesture. In
our application, there is visual feedback on when the subject was recorded, a
hand animation on one side to describe the gesture that should be drawn, and a
newly created hand animation after the gesture was stored to observe what was
recorded.

With the Meta Quest Developer Hub4 application, we can monitor the user
in both applications, guide him if necessary and make sure the recordings were
performed under the same conditions for all the subjects. After each recording,
the data were evaluated and reviewed concerning their quality, we retained some
gestures where the HMD lost tracking momentarily, since this may occur in
real-time applications as well. In an attempt to preserve the authenticity of the
dataset, we asked the participants to perform each repetition slightly differently
each time and only removed recordings that did not resemble the target gesture.

3 assetstore.unity.com/packages/tools/integration/oculus-integration-82022
4 developer.oculus.com/downloads/package/oculus-developer-hub-win
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Fig. 3. The circled game object resembles a hand performing on repeat a gesture the
user should draw. This figure portrays the RightInfinity gesture.

Fig. 4. After observing the motion of Fig.3 the user attempts to replicate the gesture,
activating the gesture recorder with voice commands.
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5 Datasets

Both datasets were recorded using the left-handed coordinate system of Unity3D.
The VR device used was the Meta Quest 2. Drawing Controller gestures with the
right and left hand are completely identical, while hand gestures with the left
hand are mirroring the right hand gestures, to make them more approachable
and easy to perform naturally and realistically. All gestures are stored in .bin
files. To ensure that everything was recorded properly and labeled as it should,
we created animation methods to observe and remove wrong recordings, which
may occur due to tracking issues from the HMD or a misunderstanding of the
task.

Fig. 5. Controller Gestures Vocabulary. The arrows are indicating the starting point
and the route that should be followed.

To create our controller gesture dataset we recorded 16 subjects, 12 of which
were right-handed and 4 were left-handed. Each participant was asked to draw
some sample controller gestures with his preferred hand for 10 minutes. We
collected samples from 15 different classes, 12 of them were English letters and 3
were symbols, with an average of 570 samples per class for right-handed gestures
and 120 for left-handed. Our gesture names are L, O, I, U, V, e, S, D, Z, C, N,
M, >, <, INFINITY. These symbols were chosen because there is no repetition
in patterns when designed, to be easily memorable and useful in actions with
a starting letter the same as the gesture name. These gestures were created
and applied to the H2020 EC project INFINITY. They were tested under real-
time conditions by end-users who did not participate in the collection of the
dataset and were successfully integrated into different environments. Some of
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these gestures are similar, to evaluate the performance in ambiguous cases and
others differ to assure the generality of the dataset. To draw a gesture, the
user must press and hold the trigger button of the controller and perform the
desired gesture which resembles either letters of the English alphabet or common
symbols. Upon release, we write down on the .bin file the subject tag, the gesture
class, which hand was used, and discard the other. Each time, a dictionary is
created with numpy arrays containing the position of the controller and HMD(X,
Y, Z), the orientation of both of them(Qx, Qy, Qz, Qw), and each timestamp
that was recorded. The subjects had been told to draw each gesture in a similar
pattern and yet with many tiny differences in gesture shape, size, and controller
orientation. Hand Recordings were trickier. Since there is no trigger button,
somehow we should record the hand motion only for the duration of the gesture.
As said before, we used voice commands to start/stop recording the gestures
and even erase them if they did not respond to the desired one. We split the
hand into 24 joints as placed by Oculus SDK in Unity3D5 and recorded each
joint for each hand. For one-handed gestures, we emptied the numpy array of the
non-dominant hand. Similarly to the controller dataset, we record the position
and orientation of each joint, of each hand as a whole object, and of the HMD.
Finally, we recorded an array of timestamps for each recording frame, to access
the duration of each gesture. For our Hand Gesture dataset, we collected samples
from 34 subjects, 25 were right-handed and 9 were left-handed. Hand Gestures
were either dynamic or static. 11 different gestures were recorded for either hand
and two additional gestures with both hands drawing at the same time, which
are included in the dataset but were not used in the benchmark. We collected
an average of 307 samples per gesture with the right hand, 226 samples with
the left, and 266 from both-handed gestures. Our 11 one-handed gesture names
are: Back, Click, Close, Grab, Home, Infinity, OpenPalm, Point, Push, Rotate,
and Scroll each with a prefix in front of the name, for example, the actual name
is RightBack, LeftClick, etc. The sampling procedures were monitored and the
samples have been cleared of wrong labeling or different design pattern. This
way ensures that each sample in each class is a correctly drawn gesture and
yet not quite identical to the rest of the samples in the same class. It must be
emphasized that the datasets were designed consistently for the recognizer to
achieve maximum accuracy. All participants were informed of the procedures
and signed an informed consent form before the experiment.

6 Benchmarking

Sktime provides state-of-the-art transformers and classifiers for time-series clas-
sification and forecasting in pandas data frames. It is an open-source python
library that provides a unified API, compatible with scikit-learn, in terms of
methods fit and transforms to train time-series data. The selected algorithms
offer a variety of different options and although they manage time-series data as
input, the inner processing varies vastly and could be manipulated to produce
5 docs.unity3d.com/Manual/index.html
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a ton of different results based on the selected hyperparameters. Our data for-
mat takes as input a pandas dataframe with features and samples as columns
and rows respectively but with different dimensions in the two datasets. For the
controller dataset, the features are 3 positions(X Y Z) and 1 timestamp, which
equals 4. For each cell, which is called a panda series, a new one-dimensional
numpy array is being stored, the length of which depends on the duration of the
gesture, in other words, how many timestamps were recorded. The hand dataset
is more complex. Each feature consists of 3 positions(X Y Z), 24 more positions
for each X, Y, Z calculating each joint position and 1 timestamp, which equals
76, and, similarly, with the controller dataset, each panda series is calculated
for every timestamp of each sample. What is important to mention here is that
each sample has an equal length of X, Y, Z and timestamps but the length may
vary between samples. For instance, a sample contains 80 timestamps recorded,
which means that it also contains 80 X, Y, Z matching each one of these times-
tamps, and that is one row of the pandas dataframe while another sample/row
consists of 150 recorded timestamps and equally X, Y, Z. Unfortunately, this is
not functional for our classifiers, for it is a necessity the pandas series to have the
same length in the whole dataframe. To resolve this issue we applied a prepro-
cess interpolation step, TSInterpolator from sktime, to our benchmark so that
each sample duration is fixed to 180 timestamps. This essentially means that a
sample with fewer than 180 timestamps will be stretched and another sample
with 200 timestamps will be compressed so that all the samples of the dataframe
have the same length of 180 for each panda series. To achieve translation invari-
ance, we perform a pre-processing step before interpolation. In particular, before
providing the input feature time series to the classifiers, we position the center
of the feature space at the location of the first element in the time series, by
subtracting from the X,Y,Z controller/hand/joint coordinates of frame t, the
X,Y,Z controller/hand/joint coordinates of frame 0. This method allows us to
calculate only the movement of the controller/hand/joint without distractions,
like a possible head movement while recording, that could insert noise and weird
angles. For simplicity reasons, we did not include orientation recordings as fea-
tures to our benchmark although orientation has been recorded to both datasets
as quaternions(Qx, Qy, Qz, Qw) for each recorded timestamp of controllers and
hands and also for each of the 24 hand joints.

7 Experiments

We split our data to 70-30% train-test and we performed 5-fold cross-validation
to sweep our data with the nevergrad optimizer and find the best hyperpa-
rameters from a selected range for our classifiers on the training set then we
applied these hyperparameters to the test set to compare our classifiers. To im-
plement the Sktime off-the-shelf algorithms for experiment tracking of our results
we used mlflow6, an open source platform, to access our experiments, be able
to reproduce them and find the best hyperparameters for each algorithm and
6 mlflow.org
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concerning the evaluation metrics, which could be used to export results and
findings. Moreover, to parse our data and be able to manipulate our code with
minimal changes we used another Python framework, Hydra[27] which was com-
bined with nevergrad[22] to sweep and find the best optimization parameters in
a rapid and elegant approach. Our sweeper optimizer was set to NGOpt, which
offers several settings to work within each run. A challenging task to increase
the accuracy was not only to find the best algorithm for the complete datasets
but also to divide them into subsets, explore the different metrics of each one
of them and try to justify why this is the case on each subset. Defining a sub-
set with gestures without many similarities between them is the best choice,
but what is critical is to compare classifiers on gesture vocabularies containing
gestures that are hard to distinguish. For the controller dataset, we tested our
classifiers at first with 5 controller gestures(L, e, S, >, INFINITY) and then we
added 5 more gestures(O, V, D, C, M). We wanted to test the accuracy of our
classifier on a small dataset compared to one with a bigger gesture vocabulary,
in an attempt to research their learning capacity. This metric was chosen to
evaluate the performance of the gesture recognizer and not the quality of the
data itself, to keep the authenticity of the dataset intact. All hyperparameters
were set the same but the budget was doubled for the bigger dataset to achieve
a fair comparison between the datasets. For the hand dataset, we used a sub-
set of 5 gestures(Infinity, Scroll, Back, Grab, Point) with both the left and the
right hand and we will showcase the best results for each classifier. For both
datasets, we used 4 classifiers(Catch22, IndividualTDE, KNeighborsTimeSeries,
RocketClassifier) that take as input different hyperparameters. The range of the
hyperparameters that were used for the controller gesture subsets is presented in
Table 1. With MLflow we got the best hyperparameters for each classifier. Table
2 presents the best hyperparameters as found for the small controller dataset
while Table 3 contains those of the bigger one. The next step is to set these
hyperparameters to the models to extract some metrics and compare the classi-
fiers. Table 4 and Table 5 present the results of the test set on both controller
datasets that we tested. The same process has been done for the hand gestures
in the aforementioned subset of 5 hand gestures and we present the metrics of
the right-hand gesture subset as the findings were better than the ones of the
corresponding left. Table 6 presents the range of the hyperparameters that were
tested, which is slightly different due to the increased complexity of the input
of the hand data. Finally, Table 7 presents the best hyperparameters after the
sweep, and Table 8 compares the classifier’s metrics after testing on unseen data
with the best hyperparameters for each of them.

8 Discussion

The findings are indicating that controller gesture recognition can be handled
extremely well with the already existing classifiers being able to achieve the
highest accuracy reaching out next to perfect classification on unseen data. The
accuracy was almost the same whether with a small subset or two times bigger.
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Table 1. Hyperparameters tested for each classifier for our controller subsets. The budget was set to 15
for the small subset and 30 for the bigger subset. The NGOpt sweeps random values in the given range
of each hyperparameter for each classifier with respect to the budget.

Catch22 IndividualTDE KNeighborsTimeSeries RocketClassifier
n_estimators: range 20-100 Window_Size: range 5-20 n_neighbors: range 1 -20 num_kernels: range 20-200
outlier_norm: True or False norm: True or False weights: Uniform or Distance max_dilations: range 1-50

igb: True or False algorithm: brute or ball_tree or kd_tree n_features: range 1-3
bigrams: True or False distance: dtw or euclidean
alphabet_size: range 2-10 leaf_size: range 10-30
dim_threshold: range 0.7-1.0
max_dims: range 5-30

Table 2. Best hyperparameters for each classifier of the 5 gesture Controller dataset

Catch22 IndividualTDE KNeighborsTimeSeries RocketClassifier
n_estimators: 58 window_size: 11 n_neighbors: 9 num_kernels: 142

outlier_norm: false norm: false weights: uniform max_dilations_per_kernel: 46
igb: false algorithm: brute n_features_per_kernel: 3

alphabet_size: 5 distance: euclidean
bigrams: false leaf_size: 20

dim_threshold: 0.824
max_dims: 14

Table 3. Best hyperparameters for each classifier of the 10 gesture Controller dataset

Catch22 IndividualTDE KNeighborsTimeSeries RocketClassifier
n_estimators: 60 window_size: 15 n_neighbors: 13 num_kernels: 155

outlier_norm: true norm: false weights: distance max_dilations_per_kernel: 16
igb: false algorithm: brute n_features_per_kernel: 2

alphabet_size: 5 distance: dtw
bigrams: true leaf_size: 22

dim_threshold: 0.924
max_dims: 22

Table 4. Best metrics on unseen data with the best hyperparameters for each classifier
on the 5 gestures controller subset.

Classifiers accuracy balanced_accuracy precision f1 score recall
Catch22 0.995 0.995 0.995 0.995 0.995
IndividualTDE 0.899 0.895 0.894 0.902 0.895
KNeighborsTimeSeries 0.992 0.992 0.992 0.992 0.992
RocketClassifier 0.997 0.997 0.997 0.997 0.997
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Table 5. Best metrics on unseen data with the best hyperparameters for each classifier
on the 10 gestures controller subset.

Classifiers accuracy balanced_accuracy precision f1 score recall
Catch22 0.992 0.993 0.993 0.993 0.993
IndividualTDE 0.862 0.86 0.86 0.862 0.86
KNeighborsTimeSeries 0.992 0.992 0.992 0.992 0.992
RocketClassifier 0.994 0.994 0.994 0.994 0.994

Table 6. Hyperparameters tested for each classifier for our hand subset. The budget was set to 30.

Catch22 IndividualTDE KNeighborsTimeSeries RocketClassifier
n_estimators: range 20-100 Window_Size: range 5-20 n_neighbors: range 1 -20 num_kernels: range 5-500
outlier_norm: True or False norm: True or False weights: Uniform or Distance max_dilations: range 1-50

igb: True or False algorithm: brute or ball_tree or kd_tree n_features: range 1-3
bigrams: True or False distance: dtw or euclidean
alphabet_size: range 2-10 leaf_size: range 10-30
dim_threshold: range 0.7-1.0
max_dims: range 5-30

Table 7. Best hyperparameters for each classifier of the 5 gesture Hand dataset

Catch22 IndividualTDE KNeighborsTimeSeries RocketClassifier
n_estimators: 100 window_size: 14 n_neighbors: 16 num_kernels: 329
outlier_norm: true norm: false weights: uniform max_dilations_per_kernel: 35

igb: true algorithm: brute n_features_per_kernel: 3
alphabet_size: 7 distance: dtw

bigrams: true leaf_size: 22
dim_threshold: 0.7

max_dims: 12

Table 8. Best metrics on unseen data with the best hyperparameters for each classifier
on the 5 gestures hand subset.

Classifiers accuracy balanced_accuracy precision f1 score recall
Catch22 0.753 0.747 0.744 0.754 0.555
IndividualTDE 0.559 0.555 0.556 0.557 0.555
KNeighborsTimeSeries 0.368 0.364 0.353 0.359 0.364
RocketClassifier 0.692 0.685 0.673 0.675 0.685
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On the contrary, even state-of-the-art machine learning algorithms are being
confused when it comes to classifying hand gestures with many features. Deep
learning algorithms are necessary to have a decent accuracy score. Particularly
left-handed gestures failed to handle the ambiguity between the samples because
the left-hand dataset was way smaller than the one with the right-hand gestures.
Adding more hand gestures further confused the classifiers and they were not
able to return worth showing results. The fact that in all the subsets used,
the accuracy was almost equal to the balanced accuracy indicates that all the
gestures are about equally important and the samples are distributed desirably.

9 Conclusion and Future Work

Gesture Recognition provides a shortcut to add another extra feature to VR
applications. What we offer are two completely different datasets, containing all
the information needed to make good use of them, which are also capable to
function with either controller or hand allowing the user the choice to perform a
gesture in any way that suits him better. Having also recorded the HMD position
and orientation through time we are able to get out of the equation some random
unintended head movements. What is an essential task in gesture recognition is
to not recognize falsely the gestures. A drawing is preferred to be labeled as
unknown rather than labeled incorrectly and perform the mapped action, which
may lead to a domino of undesired sequential actions, causing discomfort to
the user. In future research, we will focus on using these datasets to integrate
them into a gesture-based application and achieve the same high results that
we obtained in our experiments. What could also be researched in the future is
a step between, which gives feedback to the user on the percentage of gesture
recognition accuracy while drawing the gesture. It is meaningful to import an
online/continuous recognition feature, to track the hands continuously and rec-
ognize when a pattern was drawn mid-air that is mapped to a predefined gesture.
Another interesting topic to research would be Gesture Elicitation, giving the
privilege the user to create gestures based on his preferences and map them to
actions. Interesting as it may be to test our controller dataset with even smaller
subsets even creating subsets by tag, to try deep learning methods with few-shot
learning or one-shot learning, and try to trace the point where the accuracy of
the controller gesture recognition is being reduced significantly, However, this
is a challenging task to train the recognizer with limited samples of a gesture,
because disambiguate issues will occur that require special treatment to make
sure the precision of the recognizer is not affected deeply by the new inducted
samples.
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