A Modular CNN-based Building Detector for Remote Sensing Images


Convolutional neural networks (CNNs) have resurged lately due to their state-of-the-art performance in various disciplines, such as computer vision, audio and text processing. However, CNNs have not been widely employed for remote sensing applications. In this paper, we propose a CNN architecture, named Modular-CNN, to improve the performance of building detectors that employ Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) in a remote sensing dataset. Additionally, we propose two improvements to increase the classification accuracy of Modular-CNN. The first improvement combines the power of raw and normalised features, while the second one concerns the Euler transformation of feature vectors. We demonstrate the effectiveness of our proposed Modular-CNN and the novel improvements in remote sensing and other datasets in a comparative study with other state-of-the-art methods.

  • D. Konstantinidis, V. Argyriou, T. Stathaki, N. Grammalidis, "A Modular CNN-based Building Detector for Remote Sensing Images", Computer Networks, Volume 168, p. 107034, 2020.

  • Full document available here.
    Contact Information

    Dr. Petros Daras, Research Director
    6th km Charilaou – Thermi Rd, 57001, Thessaloniki, Greece
    P.O.Box: 60361
    Tel.: +30 2310 464160 (ext. 156)
    Fax: +30 2310 464164
    Email: daras(at)iti(dot)gr