On End-To-End 6DoF Object Pose Estimation and Robustness to Object Scale


This report contains a set of experiments that seek to reproduce the claims of two recent works related to keypoint estimation, one specific to 6DoF object pose estimation, and the other presenting a generic architectural improvement for keypoint estimation but demonstrated in human pose estimation. More specifically, in the backpropagatable PnP, the authors claim that incorporating geometric optimization in a deep-learning pipeline and predicting an objectʼs pose in an end-to-end manner yields improved performance. On the other hand, HigherHRNet introduces a novel heatmap aggregation method that allows for scale-aware pose estimations, offering higher keypoint localization accuracy for small scale objects.

  • G. Albanis, N. Zioulis, A. Chatzitofis, A. Dimou, D. Zarpalas, P. Daras, "On End-To-End 6DoF Object Pose Estimation and Robustness to Object Scale", RESCIENCE C, 2021.

  • Full document available here.
    Contact Information

    Dr. Petros Daras, Research Director
    6th km Charilaou – Thermi Rd, 57001, Thessaloniki, Greece
    P.O.Box: 60361
    Tel.: +30 2310 464160 (ext. 156)
    Fax: +30 2310 464164
    Email: daras(at)iti(dot)gr