RobusterNet: Improving Copy-Move Forgery Detection with Volterra-based Convolutions


Convolutional Neural Networks (CNNs) have recently been introduced for addressing copy-move forgery detection (CMFD). However, current CMFD CNN-based approaches have insufficient performance commitment regarding the localization of the positive class. In this paper, this issue is explored by considering both linear and nonlinear interactions between pixels. A nonlinear Inception module based on second-order Volterra kernels is proposed, in order to ameliorate the results of a state-of-the-art CMFD architecture. The outcome of this work shows that a combination of linear and nonlinear convolution kernels can make the input foreground and background pixels more separable. The proposed approach is evaluated on CASIA and CoMoFoD, two publicly available CMFD datasets, and results to an improved positive class localization performance. Moreover, the findings of the proposed method imply that the nonlinear Inception module stimulates immense robustness against miscellaneous post processing attacks.

  • E. Kafali, N. Vretos, T. Semertzidis, P. Daras, "RobusterNet: Improving Copy-Move Forgery Detection with Volterra-based Convolutions", in International Conference on Pattern Recognition, Milan, Italy, January 10-15, 2021. DOI:

  • Visual Computing Lab

    The focus of the Visual Computing Laboratory is to develop new algorithms and architectures for applications in the areas of 3D processing, image/video processing, computer vision, pattern recognition, bioinformatics and medical imaging.

    Download VCL Leaflet

    Contact Information

    Dr. Petros Daras, Research Director
    6th km Charilaou – Thermi Rd, 57001, Thessaloniki, Greece
    P.O.Box: 60361
    Tel.: +30 2310 464160 (ext. 156)
    Fax: +30 2310 464164
    Email: daras(at)iti(dot)gr