Towards Unsupervised Knowledge Extraction

Abstract:


Integration of symbolic and sub-symbolic approaches is rapidly emerging as an Artificial Intelligence (AI) paradigm. This paper presents a proof-of-concept approach towards an unsupervised learning method, based on Restricted Boltzmann Machines (RBMs), for extracting semantic associations among prominent entities within data. Validation of the approach is performed in two datasets that connect language and vision, namely Visual Genome and GQA. A methodology to formally structure the extracted knowledge for subsequent use through reasoning engines is also offered.


  • D. Tsatsou, K. Karageorgos, A. Dimou, J. Carbo, J. M. Molina, P. Daras, "Towards Unsupervised Knowledge Extraction", in AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering, March 22-24, 2021.

  • Full document available here.
    Contact Information

    Dr. Petros Daras, Research Director
    6th km Charilaou – Thermi Rd, 57001, Thessaloniki, Greece
    P.O.Box: 60361
    Tel.: +30 2310 464160 (ext. 156)
    Fax: +30 2310 464164
    Email: daras(at)iti(dot)gr