A DEEP LEARNING APPROACH TO OBJECT AFFORDANCE SEGMENTATION

Spyridon Thermos 1,2 Petros Daras 2 Gerasimos Potamianos 1

1 Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece
2 Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece

spthermo@e-ce.uth.gr daras@iti.gr gpotam@ieee.org

ABSTRACT

Learning to understand and infer object functionalities is an important step towards robust visual intelligence. Significant research efforts have recently focused on segmenting the object parts that enable specific types of human-object interaction, the so-called “object affordances”. However, most works treat it as a static semantic segmentation problem, focusing solely on object appearance and relying on strong supervision and object detection. In this paper, we propose a novel approach that exploits the spatio-temporal nature of human-object interaction for affordance segmentation. In particular, we design an autoencoder that is trained using ground-truth labels of only the last frame of the sequence, and is able to infer pixel-wise affordance labels in both videos and static images. Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism that enables the implicit localization of the interaction hotspot. For evaluation purposes, we introduce the SOR3D-AFF corpus, which consists of human-object interaction sequences and supports 9 types of affordances in terms of pixel-wise annotation, covering typical manipulations of tool-like objects. We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF, while being able to predict affordances for similar unseen objects in two affordance image-only datasets.

Index Terms— affordance, segmentation, human-object interaction, soft attention, deep neural networks

1. INTRODUCTION

Recent visual understanding systems are capable of detecting and recognizing objects in 2D/3D scenes [1–5]. However, a truly intelligent system should not only recognize an object, but also understand its functionality. Gibson [6] provides a way to reason about object functionalities and defines them as affordances, namely the types of actions that humans typically perform when interacting with them. Understanding object affordances and being able to localize and segment them is an important step towards robust scene understanding and active embodiment [7, 8].

Object affordance segmentation, i.e. the pixel-wise identification of the object part that enables a specific interaction, is a challenging task that has been mostly treated as a static semantic segmentation problem, usually coupled with object detection. For example, Myers et al. [9] use hierarchical matching pursuit, as well as normal and curvature features derived from RGB-D data, to learn pixel-wise labeling of affordances for common household objects, while Nguyen et al. [10] propose an encoder-decoder architecture to predict pixel-wise affordances on depthmaps. Do et al. [11] expand the architecture of [10] by adding a region proposal network (RPN) [12] to predict the bounding box of the target object and also investigate the joint learning of detecting and segmenting the object affordance part. All aforementioned works rely on strong supervision, as each object affordance part must be fully annotated at pixel-level. On the other hand, Sawatzky et al. [13] propose a weakly-supervised setting using CNNs and keypoint annotations to predict reasonable but not precise pixel-level labels, which are then refined using the GrabCut algorithm [14]. Although these methods report satisfactory results, they are dependent on successful object detection and the absence of occlusions by the interacting hand.

In addition to the above, there are affordance recognition approaches that utilize information related to the interaction such as the estimated human and hand poses, yet in a static manner [15, 16]. In the affordance reasoning domain though, this interaction-related information is used in a “learning from observation” perspective, exploiting the spatio-temporal nature of the interaction. In particular, Fang et al. [17] present “Demo2Vec” that learns spatio-temporal embeddings from product demonstrations and predicts keypoints on the object affordance part. Similarly, Nagarajan et al. [18] propose a model that infers spatial hotspot maps on static images using gradient-weighted attention maps for pre-defined actions. However, these methods focus on predicting heatmaps on target object images and not on the frames of the processed sequences.

In this paper, we surpass the aforementioned limitations, while adopting the “learning from observation” scheme for the object affordance segmentation task. For this purpose, we propose a deep spatio-temporal autoencoder that learns from human-object interaction videos, combining appearance and motion information at the encoder and predicting pixel-level affordance labels at the decoder.
Inpired by previous work [19, 20] we design a soft-attention module, placed at the bottleneck, which is responsible for the implicit localization of the hand-object interaction. This mechanism fuses the frame-level spatial information with the video-level temporal one, forcing the network to focus on the object part that participates in the interaction. The spatio-temporal feature of the latent space is also used for action prediction, which is highly correlated with the object affordance. The proposed model exploits both RGB and depth representations, which are further used to compute the 3D optical flow of the interactions. Note that during inference, our model is able to infer pixel-wise affordance labels both on videos and static images. Additionally, we introduce the SOR3D-AFF1 dataset that consists of 1201 human-object interaction sequences and supports 9 affordance types of common household objects. We utilize SOR3D-AFF to evaluate our model performance over the state-of-the-art, while using the UMD[9] and IIT-AFF[21] datasets for qualitative evaluation. An overview of our approach is depicted in Fig. 1.

The remainder of the paper is organized as follows: Section 2 details the available input representations, the architecture of the proposed deep autoencoder, and the soft-attention mechanism, Section 3 provides a description of SOR3D-AFF, while Section 4 presents our experiments. Finally, Section 5 summarizes the paper.

2. APPROACH

Our approach aims to exploit the spatio-temporal nature of human-object interaction. An end-to-end autoencoder, trained using sequences of RGB-D data, learns to predict pixel-wise affordance labels, while an attention mechanism placed at the latent space of the model is responsible for implicitly localizing the interaction hotspot. Note, that the proposed autoencoder is able to infer affordance predictions on both video and static image data.

2.1. Input Streams

As depicted in Fig. 2 and detailed in Section 2.2, the model encoder consists of two streams, one for RGB-D and the second for motion information processing. Intuitively, we use the former to force the model to learn appearance representations, while the later encodes the hand movement during the interaction.

We choose to combine RGB and depth information by stacking the color image and the depthmap along the channel dimension forming a \(4 \times H \times W \) input, where \(H \) and \(W \) represent the height and the width of the input image/depthmap. Further, we use the 3D optical flow of the sequence to represent the motion information. In particular, we utilize the algorithm proposed in [22], which computes the 3D motion vectors between two pairs of RGB-D images, and colorize them by normalizing each axis values within \([0, 255]\), thus transforming them into a three-channel image of size \(3 \times H \times W \). This colorization enables the exploitation of transfer learning by using deep learning models pre-trained on large-scale image datasets.

2.2. Deep Autoencoder Architecture

Our data-driven approach is realized as the deep autoencoder depicted in Fig. 2. Its structure is inspired by the U-Net architecture [23] and consists of an encoder, a latent part, and a decoder.

The encoder follows the typical structure of a VGG CNN [24] and consists of 11 convolutional (CONV) layers each followed by a Rectified Linear Unit (ReLU) activation function. The input is downsampled 3 times prior to the latent space using max pooling layers with \(2 \times 2 \) kernels and stride 2. Since we use RGB-D and

![Fig. 2. Detailed model architecture of the proposed deep autoencoder. From left to right: a) the model receives RGB-D and 3D flow information using two convolutional encoders and fuses the encoded features, b) the latent space comprises one residual block and two convolutional LSTMs, followed by a soft-attention mechanism (dashed line), c) a decoder receives the output of the attention module to predict a segmentation map, and d) a fully connected network receives the convolutional LSTM output to predict the action class. The skip connections enable direct activations propagation from the encoder to the decoder.](image326to546)

3D optical flow information, we utilize two identical streams for the encoder, which are fused prior to the latent part of the model. Let \(X^{d h w} \) be the feature of the RGB-D encoder stream, and \(X^{d h w} \) the corresponding 3D optical flow one, where \(d = 512 \) is the number of channels, and \(h = H/6, w = W/6 \) are the height and width of both features after the 3 downsampling layers. Then, the two features are stacked along the channel dimension and are convolved with \(d \) kernels of \(1 \times 1 \) size. This step produces the final encoder activation map, \(X^{d h w} \).

The latent part consists of a residual block and of 2 convolutional LSTMs (convLSTM) layers. The residual block follows the ReLU-CONV-ReLU-CONV structure, adopting the pre-activation method and the identity mapping proposed in [25] for performance improvement. The latent part is followed by a soft-attention mechanism, detailed in the next section, which fuses the activations after the residual block with the second convLSTM output.

The decoder shares similar structure with the encoder, consisting of 14 CONV-ReLU layers. Prior to segmentation prediction, the spatio-temporal feature of the latent part is upsampled 3 times using nearest neighbor interpolation coupled with a CONV layer. Note that each max pooling layer is connected with the respective upsampling layer using a skip connection. Subsequently, the activations after upsampling are concatenated with the ones from the corresponding skip connection. After concatenation, a CONV layer with \(1 \times 1 \) kernel size follows, forcing in-channel correlation learning. The output feature of the decoder is a \(C \times H \times W \), where \(C \) denotes the number of affordance classes.

All aforementioned parts of the model are fully convolutional. However, we utilize a simple multi-layer perceptron (MLP) to classify the performed action in parallel with the segmentation process. The MLP receives the output of the second convLSTM and consists of 3 fully connected layers.

The proposed model is trained using a spatio-temporal loss computed at the last frame of the sequence, denoted as \(L_{\text{total}} = \lambda_1 L_{\text{seg}} + \lambda_2 L_{\text{action}} \), where \(\lambda_1, \lambda_2 \in [0, 1] \) are hyperparameters that add to 1. \(L_{\text{action}} \) is realized as the cross entropy of the predicted and the ground truth action labels, while \(L_{\text{seg}} \) is the per pixel negative log-likelihood of the predicted and ground truth affordance labels, normalized over the total number of pixels. Note, that \(L_{\text{action}} \) forces the model to understand the perceived interaction, thus helping the soft-attention mechanism to localize the interaction hotspot.

1Available at \url{http://sor3d.vcl.iti.gr/}
a training and a validation set, consisting of 962 and 239 interaction sequences, respectively. Some indicative annotated samples are depicted in Fig. 3. The RGB and depthmap frames pixel resolution is 1920×1080 and 512×424, respectively. However, we choose to map each RGB frame to the corresponding depthmap resolution, as visualized in Fig. 3, in order to jointly use the streams. Besides affordance pixel-wise annotation, each sequence is further annotated with an action label complementary to the corresponding affordance, i.e., “grasping”, “squeezing”.

UMD and IIT-AFF: UMD provides pixel-level affordance labels for 105 kitchen, workshop, and garden tools. The tools were collected from 17 different categories covering 7 affordances, namely “grasp”, “cut”, “scoop”, “contain”, “pound”, “support”, “w-grasp”. Both RGB and depthmap frames are in 640×480 pixel resolution. IIT-AFF consists of a combination of images from ImageNet [27] and a collection from 2 RGB-D sensors at various pixel resolutions. All images depict cluttered scenes with multiple objects. The dataset supports 9 affordance classes, namely “contain”, “cut”, “display”, “engine”, “grasp”, “hit”, “pound”, “support”, “w-grasp”, and provides pixel-wise affordance annotations and bounding boxes.

4. EXPERIMENTS

In this section, we present the quantitative and qualitative evaluations of the proposed model, as well as an ablation study to demonstrate each individual model component contribution.

4.1. Implementation Details

All images and video frames utilized as inputs to the model are resized to 300×300 pixel resolution, while each video is subsampled to 10 FPS. We pre-train both encoders on separate datasets; the RGB-D encoder coupled with an LSTM is trained for 50 epochs on the UTKinect action recognition dataset [28], while for the colorized 3D flow encoder the weights of a VGG16 trained on ImageNet are used. The rest of the model weights are initialized using Xavier initialization [29]. The model is fine-tuned for 200 epochs, using batch size equal to 2, Adam optimization [30], and learning rate set to 2×10^{-5}. Further, we set $\lambda_1 = 0.2$ and $\lambda_2 = 0.8$ for the first 150 epochs, as action recognition is a critical step towards affordance segmentation and should converge faster that the total loss. For the last 50 epochs, both hyperparameters are tuned to 0.5. During inference our model is able to predict a segmentation mask in 22ms.

We choose to quantitatively compare our model with AffordanceNet [11], a convolutional autoencoder that utilizes an RPN in order to restrict affordance segmentation to a detected bounding box. We re-implement AffordanceNet to receive 300×300 inputs and train it for 50 epochs with the batch size set to 8 and learning rate equal to 2×10^{-5}. All models are implemented in PyTorch [31] and trained on an Nvidia Titan X GPU.

4.2. Quantitative Evaluation

We use 2 different metrics to assess model performance: a) the Intersection over Union (IoU), and b) the F_{β}-score measure for $\beta = 1$. IoU quantifies the overlap between the predicted and target affordance mask, while F-score provides helpful insight about the model robustness based on false positive and negative predictions. Since some affordances are associated with more objects, we choose to evaluate the performance of the model using a variation of F-score, namely the weighted F-score denoted as F_{β}^w. Since “grasp” and “lift” are the most dominant affordance labels, we set their weight to 0.2, while for the next dominant label “push” we set it to 0.1. The remaining weights are set to 0.083 so that they all sum to 1.
In this paper we proposed a novel approach for the task of object affordance segmentation. A deep autoencoder was presented, able to process RGB-D interaction sequences and implicitly localize the interaction hotspot through a soft-attention mechanism placed at the latent part of the model. Additionally, a corpus with RGB-D interaction videos coupled with pixel-wise annotation was introduced, as a subset of the SOR3D sensorimotor dataset. The presented experiments showed our model’s competitive performance in comparison with the state-of-the-art, without the need of additional object-related information such as bounding boxes and class labels. From the presented qualitative examples the model’s ability to predict affordance labels on unseen objects was also demonstrated. Future work will investigate spatio-temporal affordance reasoning exploiting the capabilities of the presented attention mechanism.
6. REFERENCES

